内容概要:本文详细介绍了在Visual Studio平台上实现双目视觉三维重建的具体步骤和技术要点。首先,通过棋盘格标定获取相机内外参数,确保图像校正的准确性。接着,利用SGBM算法进行立体匹配,计算视差图并优化参数以提高重建质量。最后,将视差图转化为三维点云,完成从二维图像到三维世界的转变。文中还分享了许多实用的调试技巧和常见问题的解决方案,如标定板的选择、参数调优以及点云生成中的注意事项。 适合人群:具有一定C++编程基础和OpenCV使用经验的研发人员,尤其是对计算机视觉和三维重建感兴趣的开发者。 使用场景及目标:适用于科研机构、高校实验室以及工业应用中需要进行高精度三维重建的场景。主要目标是帮助读者掌握双目视觉三维重建的关键技术和实现方法,能够独立搭建和调试相关系统。 其他说明:附带的操作文档和测试数据有助于快速上手实践,同时提供了丰富的参考资料供深入研究。文中提及的一些优化技巧和故障排除方法对于实际应用非常有价值。
2025-06-20 17:59:10 419KB
1
卫星影像三维重建-开源软件-cars库的测试数据,旨在快速上手操作和了解cars库的效果和使用,原始数据的打开建议配合【卫星影像三维重建】实用小工具-图像查看器- pvflip文章,其链接方式:https://blog.csdn.net/weixin_44702962/article/details/136227577
2025-05-19 11:18:08 11.84MB
1
此代码根据 SPECT 重建作者:Martin Šámal Charles @ Regional SPECT 研究高级图像处理培训班,2004 年 4 月 19-23 日。 迭代算法的原理是通过连续的投影重建断层扫描切片的图像。 估计。 与当前估计值对应的预测值与测得的预测。 比较结果用于修改当前估计,从而创建一个新的估计。 算法在比较测量和估计预测的方式以及应用于当前估计的校正类型方面有所不同。 该过程是通过任意创建第一个估计值启动的 - 例如,一个统一的图像(所有像素等于 0、1 或平均像素值,...)。 校正是通过添加差值或乘以测量值和测量值之间的商来进行的。 估计的预测。
2025-05-07 17:13:31 3KB matlab
1
### SPECT图像的最大似然断层重建 #### 一、引言 SPECT(单光子发射计算机断层成像)是一种重要的医学成像技术,它通过测量体内放射性同位素发射的γ射线来生成人体内部组织的图像。传统SPECT反投影断层重建技术往往无法提供足够的细节清晰度,特别是对于那些需要高分辨率图像的应用场景。为此,研究人员开发了一种基于统计模型的最大似然断层重建技术,该技术能够显著提高图像质量,尤其是能够有效补偿随机干扰、衰减、散射等因素导致的图像退化。 #### 二、SPECT成像原理与挑战 ##### 2.1 成像机理 SPECT成像的基本过程包括:患者体内注射带有放射性核素的示踪剂,这些核素会在特定的组织或器官中积累,并以一定的概率发射γ射线。通过围绕患者旋转探测器,可以获得多个角度下的γ射线投影数据。根据这些数据,可以使用不同的算法重构出组织或器官的横截面图像。 ##### 2.2 挑战 尽管SPECT成像技术已经取得了很大的进展,但它仍然面临着几个关键的挑战: - **随机性**:探测器上接收到的γ射线数量遵循泊松分布,这增加了图像的不确定性。 - **衰减和散射**:在组织内部传播的过程中,γ射线会发生衰减和散射,这会降低图像的质量。 - **低剂量限制**:为了减少患者接受的辐射剂量,通常使用较低的放射性示踪剂剂量,这导致采集到的数据较少。 #### 三、基于统计模型的最大似然断层重建 ##### 3.1 统计模型 为了克服上述挑战,基于统计模型的最大似然估计方法被引入到SPECT断层重建中。这种方法的核心在于建立一个统计模型来描述γ射线的分布情况,并以此为基础进行图像重建。 - **泊松分布**:探测器上每个像素点接收到的γ射线数遵循泊松分布,参数λ表示该像素对应的γ射线平均数,λ与该像素处的放射性核素浓度成正比。 - **最大似然估计**:通过寻找使观测数据最有可能发生的参数值,即最大化观测数据的似然函数,来进行图像重建。 ##### 3.2 算法实现 - **重建算法**:最大似然估计的断层重建通常采用迭代算法实现,如EM(期望最大化)算法。EM算法通过不断优化似然函数来逐步逼近最优解。 - **修正的EM算法**:为了解决原始EM算法存在的问题(例如收敛速度慢、容易陷入局部最优解),研究者们提出了一些改进的方法,比如最大后验概率(MAP)和有代价的最大似然(PML)准则,以及各种修正的EM算法。 #### 四、实验结果与分析 通过对实际数据进行模拟实验,结果显示最大似然断层重建技术相比于传统的反投影法,在提高图像清晰度方面具有明显优势。这种优势尤其体现在对微小结构的检测能力上,这对于早期疾病诊断至关重要。 #### 五、结论与展望 最大似然断层重建技术为提高SPECT图像质量提供了一种新的途径。尽管这种方法在计算效率和噪声控制方面还存在一些挑战,但随着算法优化和硬件性能的提升,未来有望在临床上得到更广泛的应用。 通过综合考虑统计模型和迭代算法,最大似然断层重建不仅能够显著提高图像质量,还能有效地补偿随机干扰、衰减和散射等因素的影响,为医学成像领域带来了革命性的进步。
2025-05-07 17:10:01 243KB SPECT 最大似然
1
内容概要:本文详细介绍了如何使用Python构建一个完整的双目三维重建系统。首先,通过双目摄像头采集图像并进行硬件连接,接着进行双目标定和立体校正,确保图像无畸变并对齐。然后,利用SGBM算法和WLS滤波器进行视差计算,提高视差图的质量。最后,通过Open3D生成并显示点云,完成从二维图像到三维空间的转换。文中还提供了许多实战技巧,如标定失败的解决办法、视差图断层的处理以及点云降采样的方法。此外,系统还集成了深度学习模型用于立体匹配,进一步提升了系统的鲁棒性和精度。 适合人群:具有一定编程基础和技术背景的研发人员,尤其是对计算机视觉、三维重建感兴趣的开发者。 使用场景及目标:适用于需要进行三维重建的应用场景,如机器人导航、虚拟现实、增强现实等领域。主要目标是帮助读者掌握双目三维重建的完整流程,能够独立搭建和优化自己的三维重建系统。 其他说明:本文不仅提供详细的代码实现,还包括了许多实战经验和优化技巧,帮助读者避免常见错误并提高系统的性能。同时,附赠了一些常用的点云处理算法,方便读者进行二次开发。
2025-04-25 16:14:09 1.36MB
1
内容概要:本文详细介绍了单目视觉结构光三维重建的Matlab实现,涵盖了从标定到点云生成的全过程。首先讨论了标定数据的正确加载方式,强调了内参矩阵和旋转平移矩阵的重要性。接着深入探讨了四步相移法的相位计算,包括数据类型的转换、相位范围的规范化以及中值滤波去噪。随后讲解了格雷码解码的关键步骤,如动态阈值设置和边界误判处理。此外,还介绍了多频外差法的相位展开技术和点云生成的具体实现,包括深度计算和坐标系转换。文中分享了许多实践经验和技术细节,帮助读者避免常见的陷阱。 适合人群:具有一定编程基础并希望深入了解结构光三维重建技术的研究人员和工程师。 使用场景及目标:适用于需要进行单目视觉结构光三维重建的应用场景,如工业检测、医疗影像、虚拟现实等领域。目标是掌握从标定到点云生成的全流程技术,提高重建精度和效率。 其他说明:本文不仅提供了详细的代码实现,还分享了很多实用的经验和技巧,帮助读者更好地理解和应用相关技术。
2025-04-22 16:31:59 1.06MB
1
基于格雷码技术的结构光三维重建源码详解:MATLAB环境下的实现与应用,基于格雷码结构光的三维重建MATLAB源码解析与实现,基于格雷码的结构光三维重建源码,MATLAB可以跑通 ,基于格雷码;结构光;三维重建;源码;MATLAB,基于格雷码算法的MATLAB结构光三维重建源码 格雷码技术是一种用于提高数据传输效率和准确性的编码方法,尤其在数字通信和计算机系统中应用广泛。其核心思想是将连续的数值通过一种特殊的编码方式转换为一系列的二进制数,相邻数值的编码仅有一位二进制数不同,这种特性极大地减少了数据在传输过程中发生错误的可能性。在三维重建领域,格雷码技术与结构光结合,形成了一种高效的测量手段,广泛应用于机器视觉和光学测量领域。 结构光技术是指利用预先设计好的图案(通常是光栅或条纹)投射到物体表面,由于物体表面的不规则性,投射的图案会发生变形,通过分析变形前后的图案,可以计算出物体表面的三维信息。格雷码在此技术中起到了至关重要的作用,因为它的单比特变化特性使得编码的图案能以非常高的精度进行解码,从而获得更为精确的三维坐标信息。 MATLAB是一种高性能的数值计算环境和第四代编程语言,广泛应用于算法开发、数据可视化、数据分析以及数值计算。在三维重建的研究和开发中,MATLAB提供了一套完整的工具箱,使得科研人员和工程师可以方便地实现复杂的数学算法和数据处理流程。在基于格雷码的结构光三维重建中,MATLAB不仅能进行快速的算法实现,还能提供强大的图形界面,方便进行结果的展示和分析。 通过深入理解这些技术文件,我们可以了解到格雷码在结构光三维重建中的应用原理,MATLAB环境下如何实现格雷码的编码和解码过程,以及如何将这些理论和技术应用于实际的三维重建项目中。文档内容可能涵盖了从基本理论的介绍,到具体算法的实现细节,再到实际案例的分析和源码的具体使用方法。 此外,文档可能还包含了技术博客文章,这些博客文章通过通俗易懂的语言,介绍了格雷码技术的背景、应用领域、优势以及在结构光三维重建中的具体应用实例,使得没有深厚数学背景的读者也能够理解和欣赏这种技术的魅力。通过这些技术博客文章,初学者可以快速入门,并逐步深入学习和掌握格雷码在三维重建领域的应用。 基于格雷码技术的结构光三维重建源码详解和实现对于理解三维重建技术的原理与应用具有重要意义。它不仅为专业研究人员提供了实践的平台,也为企业提供了实现高精度三维测量的可能。同时,文档中提及的源码和案例分析为学习者提供了学习和实践的机会,有助于推动三维重建技术的发展和应用。
2025-04-17 20:12:36 2.78MB
1
在本资源中,我们主要关注的是使用Python实现的SRGAN(Super-Resolution Generative Adversarial Networks,超分辨率生成对抗网络)图像超分重建算法。SRGAN是一种深度学习技术,用于提升低分辨率图像的质量,使其接近高分辨率图像的清晰度。这种算法在图像处理、计算机视觉和多媒体应用中具有广泛的应用。 SRGAN的核心在于结合了生成对抗网络(GANs)与超分辨率(SR)技术。GANs由两部分组成:生成器(Generator)和判别器(Discriminator)。生成器负责根据低分辨率图像创建高分辨率的假象,而判别器则试图区分真实高分辨率图像和生成器产生的假象。通过对抗训练,生成器逐渐改进其生成高分辨率图像的能力,直到判别器无法准确区分真伪。 在这个Python实现中,数据集是训练和评估模型的关键。通常,SRGAN会使用如Set5、Set14、B100、Urban100或DIV2K等标准数据集,这些数据集包含了大量的高清图像,用于训练和测试算法的效果。数据预处理和后处理步骤也是必不可少的,包括图像缩放、归一化和反归一化等操作。 代码实现中,可能会包括以下关键部分: 1. **模型定义**:生成器和判别器的网络结构,通常基于卷积神经网络(CNNs)设计。 2. **损失函数**:除了传统的均方误差(MSE)损失,SRGAN还引入了感知损失(Perceptual Loss),它基于预训练的VGG网络来衡量图像的结构和内容相似性。 3. **优化器**:选择合适的优化算法,如Adam或SGD,调整学习率和动量参数。 4. **训练流程**:定义训练迭代次数,进行交替优化,同时更新生成器和判别器的权重。 5. **评估与可视化**:在验证集上评估模型性能,通过PSNR(峰值信噪比)和SSIM(结构相似性指数)等指标来量化结果,并使用可视化工具展示高分辨率图像。 这个资源可能还包括训练脚本、测试脚本以及如何加载和保存模型的说明。对于初学者,理解并运行这些代码可以帮助深入理解SRGAN的工作原理。同时,对于有经验的研究者,这是一个可以进一步定制和优化的基础框架。 这个Python实现的SRGAN项目不仅提供了对深度学习和图像超分辨率的实践经验,还可以帮助用户掌握如何处理和利用大型数据集,以及如何在实际应用中运用生成对抗网络。对于想要在图像处理领域进行研究或者开发相关应用的人来说,这是一个非常有价值的资源。
2025-04-16 20:06:25 294.23MB python 数据集
1
在医学成像领域,计算机断层扫描(Computed Tomography,简称CT)是一种广泛使用的无创检查技术,能够生成体内组织的横截面图像。在CT图像重建过程中,数学方法起着至关重要的作用,其中ART(Algebraic Reconstruction Technique)和SART(Simultaneous Algebraic Reconstruction Technique)是两种常见的迭代重建算法。 **ART算法** ART算法由Gordon等人在1970年代提出,是一种基于代数重建的迭代方法。它适用于离散数据,特别适合处理那些测量值受到严重噪声干扰的情况。ART的基本思想是每次迭代中,通过最小化投影数据与实际测量数据之间的差异来更新每个像素的值。其步骤如下: 1. **初始化**:设置所有像素的初始值。 2. **迭代过程**:对于每一轮迭代,选择一个体素(或一组体素)作为当前焦点,然后更新其余体素的值。具体来说,计算每个体素的新值,使其投影值与当前投影数据匹配。 3. **停止条件**:迭代直至满足预设的终止条件,如达到预定的迭代次数、残差低于阈值或像素值变化小于特定值。 ART的优点在于计算简单且易于实现,但它的主要缺点是容易陷入局部极小值,导致重建图像质量不佳,特别是在噪声较大的情况下。 **SART算法** SART算法是对ART的一种改进,由Andersen和Kak于1984年提出。与ART不同,SART在每一轮迭代中更新所有体素的值,而不是只更新一部分。这使得算法在全局优化上更有效,减少了陷入局部极小值的风险,从而提高了图像质量。 SART的基本步骤包括: 1. **初始化**:与ART相同,设置所有像素的初始值。 2. **迭代过程**:对每一个体素,计算其对所有投影的影响,并根据这些影响更新其值。这个过程考虑了邻近体素的贡献,使得重建过程更加稳定。 3. **停止条件**:同ART,满足预设的终止条件后停止迭代。 SART在处理噪声和解决边缘模糊问题方面优于ART,因此在实际应用中更为常见。然而,由于SART涉及到更多的计算,其计算复杂度相对较高。 在MATLAB环境中,实现ART和SART算法通常涉及矩阵操作和迭代逻辑。开发者需要对CT扫描的投影数据进行处理,将其转换为可被算法使用的格式。MATLAB中的代码会涉及到向量化的运算、误差计算以及迭代更新等步骤。通过提供的"ART,SART算法"压缩包文件,用户可以获得实现这两种算法的MATLAB代码示例,用于CT图像的重建实验。 ART和SART算法是医学CT图像重建中的关键工具,它们通过迭代方法逐步优化重建图像的质量。MATLAB作为强大的科学计算环境,为研究和实践这两种算法提供了便利。在实际应用中,结合适当的预处理和后处理技术,可以进一步提高CT图像的重建效果。
2025-01-10 11:27:01 4.01MB SART CT重建
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-12-15 13:11:54 7MB matlab
1