模数转换器(ADC)是将连续变化的模拟信号转换为数字信号的电子设备,在电子系统中扮演着至关重要的角色。在选择合适的ADC时,我们不仅需要关注其基本的性能指标,如分辨率、信噪比(SNR)或谐波失真,还必须深入了解一些常常被忽略的技术规格,这些规格对于特定的应用场景下可能起到决定性作用。
分辨率作为ADC输出的位数,是容易被误解的技术规格之一。它仅显示输出的位数,并不直接反映设备的实际性能。为了更准确地衡量性能,可以参考有效位数(ENOB),它是通过实际的SNR测量来计算的。对于更深入的性能了解,噪声频谱密度(NSD)提供了一种以dBm/Hz或nV/√Hz为单位的有用指标,它有助于选择匹配前端电路的模数转换器。
电源抑制(PSR)是衡量电源纹波如何影响ADC输入,并反映在数字输出上的一个重要指标。如果PSR有限,则电源线上的噪声仅会被抑制在输入电平之下30dB至50dB,这在高噪声环境中尤其重要,例如医疗或工业应用,以及那些使用DC-DC转换器的应用。
共模抑制(CMR)衡量的是当共模信号存在时引起的差模信号。它对于那些使用差分输入的ADC来说尤为重要,因为差分输入本身具有抑制偶数阶失真的能力。虽然CMR可能不会在所有数据手册中被规定,但常见的CMR范围通常在50dB至80dB之间。
时钟压摆率决定了采样时刻的明确性,从而影响噪声性能。设计人员需调整设计,确保压摆率符合要求以避免过量噪声。孔径抖动,即内部时钟的不确定性,同样影响ADC的噪声性能。孔径延迟指采样信号应用与实际采样时刻之间的时间延迟,这一指标在精确采样时刻非常重要的应用中才显得重要。
转换时间是逐次逼近型转换器(SAR)特有的规格,指的是完成一次转换所需的时间,而转换延迟则适用于流水线式转换器,它反映了流水线内部数字级别的数目。转换时间与转换延迟密切相关,关系到整体转换效率。
唤醒时间是指在低功耗应用中,器件关闭后重新启动至输出稳定所需的时间。在高性能应用场景下,输出负载应当被降至最低,同时需要适当的去耦和优化布局,以降低电源上的压降。
在设计ADC应用时,除了关注上述技术规格外,还必须考虑输出驱动能力。对于CMOS输出的ADC来说,达到完全驱动能力并非最佳性能状态,实际应用中应尽可能降低输出负载。
在实际应用中,选择合适的ADC并非易事。除了性能指标,还需要考虑应用需求、成本、功耗以及如何最大化利用ADC的潜在能力。因此,参考ADI公司这样的权威资料,了解那些不被重视的技术规格,能够帮助我们做出更加明智的选择。
2024-10-31 08:35:35
614KB
ADC
1