车辆多体动力学仿真第四章 ADAMS-Car(三) 车辆多体动力学仿真第四章 ADAMS-Car(三)主要介绍了ADAMS/Car中路面建模器的使用和路面特性文件结构。以下是相关知识点的总结: 一、ADAMS/3D-Spline 路面模型 * ADAMS/3D-Spline 路面模型可以限定任意一个三维的光滑路面,例如停车场、跑道等等。 * 完整的路面定义参数包括:路面的中线、宽度、横向倾斜角、路面左右的摩擦系数等等。 * 路面数据以XML形式文件储存。 二、路面特性文件结构 * 路面特性文件结构包含不同的数据块:MDI_HEADER、UNITS、MODEL、GLOBAL_PARAMETERS、DATA_POINTS等。 * MDI_HEADER 描述TeimOrbit文件。 * UNITS规定了路面单位制。 * MODEL解释路面模式和版本。 * GLOBAL_PARAMETERS 定义通用路面参数。 * DATA_POINTS 包含数据点格式的路面信息。 三、使用路面建模器 * 路面建模器是生成路面数据文件的快捷工具。 * 使用路面建模器能够:从scratch中创建3D路面、使路面可视化、以XML格式修改3D Spline 路面特性文件、创建路面障碍的真实性以便定制测试路径。 * 启动路面建模器:在Adams/Car中开始路面建模器,在Simulate模拟菜单中,点击Full-Vehicle Analysis,然后选择路面建模器。 四、路面建模器的使用 * 创建一个新的3D Spline 路面性能文件:选择File菜单,选择New。 * 编辑已有的3D Spline 路面性能文件:选择以下几种方式之一:从File菜单中,选择Open,然后浏览所有需要的文件;在Road File的文本框的右边,选择 Browse按钮,然后浏览所以需要的文件。 * 改变单位:从Settings菜单中,选择Units,然后按OK。 * 保存对XML文件所作的改变:在路面建模器的底部,选择Save或者Save As。 * 显示Header 信息并添加注释:选择Header 标签,查看Revision Comment区域的信息,输入任何对管理路面性能文件有用的注释。 五、设置或者修改Global参数 * 选择Global 标签。 * 改变参数。(向前方向、研究算法、封闭道路,等等) 六、定义路面数据点 * 使用数据点表:编辑数据表的值。 * 新增功能:定义路面数据点的新功能。 ADAMS/Car中的路面建模器和路面特性文件结构是车辆多体动力学仿真的重要组成部分,对于车辆的行驶仿真和测试路径的设计具有重要意义。
2025-06-19 13:43:14 3.06MB 车辆动力学
1
非线性三自由度车辆动力学模型,通常被称为“魔术轮胎公式”(Magic Formula),是汽车动力学领域中的一种重要理论模型。这个模型基于车辆在行驶过程中受到的各种力和力矩,包括轮胎与路面的相互作用,来描述车辆在三个自由度上的运动:横向、纵向和侧向。在MATLAB/Simulink环境中构建这样的模型,可以进行仿真分析,以理解车辆动态行为并优化其性能。 我们需要理解模型的基本构成。三自由度模型通常包括以下组件: 1. **车辆质心运动**:车辆在纵向(前进/后退)和横向(左右)的移动,以及围绕垂直轴的滚动。这些运动由车辆的质量、加速度和外力(如引擎牵引力、空气阻力、重力等)决定。 2. **轮胎模型**:魔术轮胎公式是描述轮胎与路面交互的关键。它包括轮胎的侧偏角、滑移率和负载变化对抓地力的影响。这种模型复杂且非线性,因为它考虑了轮胎橡胶的弹性、变形以及与路面的接触状态。 3. **悬挂系统**:车辆的悬挂系统影响着车辆的稳定性。它负责缓冲路面不平带来的冲击,并保持车身稳定。在模型中,悬挂的刚度、阻尼和位移会影响车辆的垂直运动。 4. **转向系统**:转向系统决定了车辆如何根据驾驶员输入改变方向。在三自由度模型中,转向角度会影响轮胎的侧偏角,进而影响车辆的侧向运动。 在MATLAB/Simulink中建立这样的模型,需要完成以下步骤: 1. **定义车辆参数**:设定车辆的质量、几何尺寸、悬挂特性、轮胎参数等。 2. **创建子系统模块**:为车辆质心运动、轮胎模型、悬挂系统和转向系统分别创建模块,每个模块内部实现对应的物理关系。 3. **连接模块**:将这些子系统模块通过信号连接起来,形成完整的车辆动力学模型。例如,驾驶员输入(如方向盘角度)会驱动转向系统模块,其输出再影响轮胎模型和车辆质心运动。 4. **仿真设置**:配置仿真时间、步长等参数,以确保结果的精度和稳定性。 5. **运行仿真**:执行模型并观察车辆在不同条件下的动态响应,如速度、加速度、轮胎力等。 6. **结果分析**:利用MATLAB的工具箱进行数据分析,理解车辆行为并可能调整参数以优化性能。 通过这个模型,工程师可以研究各种驾驶场景,比如急转弯、紧急刹车、高速行驶等,从而改进车辆的操控性和安全性。此外,该模型还可以用于开发车辆控制系统,如电子稳定程序(ESP)或防抱死制动系统(ABS)。 在实际应用中,非线性三自由度车辆动力学模型能够提供比简化模型更准确的预测,但计算量较大。因此,为了平衡精确度和计算效率,有时会采用线性化或简化版本的模型。然而,对于复杂的车辆行为分析和控制系统的开发,非线性模型仍然是不可或缺的工具。
2024-08-09 13:15:30 1.03MB matlab
1
横向车辆动力学有助于使用动态载荷传递方程模拟车辆的偏航特性。
2023-04-04 11:07:16 53KB matlab
1
matlab开发-车辆动力学。用于Matlab的开源仿真包
2023-01-25 15:28:52 16.87MB 未分类
1
用于无人驾驶车辆横向控制,基于动力学模型的LQR算法,能够实现较好的跟踪效果
1
本模型是自己搭建的14自由度simulink车辆动力学模型,仅供参考
2022-11-03 21:26:24 450KB 14自由度 动力学 vehicle 车辆自由度
1
自己搭建简单的模型,适合初学者,便于理解
2022-08-15 14:05:14 40KB simulink
1
很不错的建模手册,祝您早日建模完成,欢迎使用
2022-06-03 22:45:08 2.83MB 建模
1
基于通用 FS 车辆的纵向车辆 Dynamcis 模型。 配置优化加速事件。
2022-05-31 21:33:40 360KB matlab
1