(1)定速巡航的速度控制算法 速度控制算法起初用于定速巡航的控制技术中。PID算法是一个传统的具有 反馈环节的控制算法,因其原理简单易用得到广泛的推广。很多学者将PID与其 他算法进行结合成功改善了对速度控制的精确度,文献[28]使用模糊控制的方法 对PD的比例.微分参数进行实时在线调整,建立了汽车恒定速度控制的模糊PD 控制算法。所提出的模糊PD控制算法具有较好的控制性能,与传统PID控制方 法相比可以在较短时间内实现车辆的定速巡航,并且偏差与超调量都很小。高振 海等人【29~30】采用将非线性系统局部线性化的描述方法,应用预瞄跟随理论提出了 新颖的速度控制方法,通过优化多目标的评价函数决策出理想纵向加速度,并对 其进行微分校正,充分考虑了驾驶员反应滞后以及汽车动力学滞后的响应特性。 该方法精准有效地实现了对目标速度的跟随控制,为无人驾驶汽车速度控制的研 究打开了一个新的思路。高锋等人[31】通过辨识获得节气门开度到车速的传递函数, 从而对汽车纵向动力学进行了描述,在此基础上应用鲁棒控制理论设计了多模型 分层切换控制系统,实现了当模型存在较大不确定性时能够对车速快速准确得控 制。陈刚[321采用改进BP神经网络设计了一种驾驶机器人车速跟踪神经网络控制 方法,其收敛速度高于梯度下降法的收敛速度,且达到的控制精度也更高。 (2)自适应巡航的速度控制算法 速度控制驾驶员模型也常用于车辆自适应巡航控制的研究中,萝莉华【33】应用 多目标MPC算法实现了汽车自适应巡航控制策略,较传统PID算法具有多目标 优化的功能,改善了跟车性、舒适性以及燃油经济性。管欣[34】基于驾驶员操作汽 车的行为特性,将驾驶员建模理论.稳态预瞄动态校正假说【35】应用于汽车自适应 巡航控制系统的理论研究中,构建了基于驾驶员最优预瞄加速度模型的车辆自适 应巡航控制算法。仿真实验结果表明基于驾驶员操纵行为特性的分析,应用驾驶 员操纵行为建模理论来研究汽ACC系统的控制过程为车辆ACC控制系统的开发 提供了一个可行的研究途径。文献[36]根据模糊神经网络控制理论,研究了自适 应巡航控制跟随模式下的距离控制,构造了五层的模糊神经网络,推导出了相应 BP算法公式,并对汽车自适应巡航控制跟随模型进行了仿真实验。经过输入实际 样本数据进行训练后,自适应巡航跟随控制模型具有较高的控制精度,并且减少 了踏板角度的波动,基于模糊神经网络模型的自适应巡航控制跟随模型能够取得 良好的效果。 虽然这些算法取得了良好的效果,但基本上是围绕着定速巡航与跟车巡航展 开的研究,并不能应对突然的变道或转弯所带来的高速失稳的危险。本文基于多 点预瞄的思想,运用二次规划的方法提出自适应避险的速度规划功能,并结合评 价函数最优化的方法对目标速度进行实时跟随,这样车辆在巡航时可避免因突然 万方数据
2021-11-10 14:44:21 11.9MB 无人驾驶汽车 路径规划 控制算法
1
论文文档,论文指导
2021-10-14 16:16:40 402KB 文档 路径规划控制
1
表2.4各个算法计算结果统计表 2.4在汽车避障局部路径规划中的仿真实验 为验证改进水滴算法在汽车局部路径规划领域的应用可行性,将算法用于无 人驾驶汽车的局部路径规划中。设计一条平直同向双车道,长度为260米、宽度 为7米,在模型中表示为65×6的二维栅格,单位栅格的边长为4mxl.17m。为验 证算法对速度的鲁棒性,在汽车分别处于中速20m/s和高速30m/s状态下进行路 径规划实验。当汽车探测到前方40m内有障碍时,局部路径规划程序将被触发, 并按0.5s的时间步长实时进行路径规划,以完成对静态障碍车超车、对动态障碍 车超车和对动态障碍车避车的三种工况。算法参数的设置如表2.5所示。 表2。5改进水滴算法的参数表 14 万方数据
2021-09-22 15:34:44 11.9MB 无人驾驶汽车 路径规划 控制算法
1
运用多点预瞄与滚动优化相结合的模型预测控制算法设计了汽车的跟随转向控制模型。在双移线工况下进行了多组速度的跟随实验,结果表明该控制器跟随路径的误差小,对速度的适应性强。与Carsim控制器的跟随结果相比,其跟随效果更好。
2019-12-21 22:20:49 11.9MB 无人驾驶汽车 路径规划 控制算法
1