内容概要:本文介绍了自由漂浮状态下双臂空间机械臂的轨迹跟踪控制仿真实现。主要内容包括动力学模型的建立和PD控制的实现。动力学模型通过Matlab函数定义,考虑了双臂机器人的惯性矩阵和科氏力/离心力项。PD控制器设置了不同的比例和微分增益,确保了轨迹跟踪的精度。仿真结果显示,尽管存在一定的误差,但总体效果良好。此外,还提供了二次开发的建议,如改进动力学模型、引入前馈补偿以及优化求解器设置。 适合人群:对空间机器人技术和控制系统感兴趣的科研人员、研究生及工程技术人员。 使用场景及目标:适用于研究和开发空间机械臂的轨迹跟踪控制,帮助理解和优化双臂空间机械臂的动力学特性和控制策略。 其他说明:文中提到的仿真程序支持二次开发,便于进一步的研究和应用。同时,提供了一些实用的调试技巧,如实时绘图模块的应用,使仿真结果更加直观易懂。
2025-10-22 19:46:23 4.24MB
1
内容概要:本文探讨了无人潜航器(AUV)路径跟踪控制的关键技术——多目标模型预测控制方法。首先介绍了传统路径跟踪控制方法的局限性,即仅关注单一目标如最短路径,而在复杂的海洋环境中,无人潜航器需要同时满足多个目标,如避障、保持深度和节能等。因此,多目标模型预测控制方法能够综合考虑这些不同甚至相互冲突的目标,提前预测系统未来的行为,从而做出更优的控制决策。接着,文章展示了用Python实现这一控制方法的代码示例,包括计算当前位置与目标路径距离的基础函数distance_to_path,预测下一时刻位置的函数predict_next_position,以及核心的多目标模型预测控制函数multi_objective_mpc。最后,详细解释了各个函数的功能和参数设置,强调了权重矩阵Q和R在平衡不同目标方面的重要作用。 适合人群:对无人潜航器路径跟踪控制感兴趣的科研人员和技术开发者,尤其是那些希望深入了解多目标模型预测控制方法的人群。 使用场景及目标:适用于研究和开发无人潜航器路径规划和控制系统,旨在提高无人潜航器在复杂海洋环境中的导航精度和效率。 其他说明:文中提供的代码仅为概念验证性质,实际应用时需要进一步优化和调整,以应对更加复杂的海洋环境和更高的性能要求。
2025-10-18 16:23:31 2.02MB
1
强化学习算法复现研究:深度探究Reinforcement Learning-Based Fixed-Time轨迹跟踪控制机制及其在机械臂的应用——适应不确定性系统及输入饱和状态的自适应控制框架与简易代码实践指南。,《顶刊复现》(复现程度90%),Reinforcement Learning-Based Fixed-Time Trajectory Tracking Control for Uncertain Robotic Manipulators With Input Saturation,自适应强化学习机械臂控制,代码框架方便易懂,适用于所有控制研究爱好者。 ,核心关键词:顶刊复现; 强化学习; 固定时间轨迹跟踪控制; 不确定机械臂; 输入饱和; 自适应控制; 代码框架; 控制研究爱好者。,《基于强化学习的机械臂固定时间轨迹跟踪控制:复现程度高达90%》
2025-09-29 03:11:49 555KB
1
内容概要:本文探讨了在非线性工况下,利用容积卡尔曼滤波(CKF)对轮胎侧向力和侧偏刚度进行估计和修正的方法,并将其应用于MPC路径跟踪控制中。首先介绍了传统的线性轮胎模型在特定条件下无法准确描述轮胎行为的问题,然后详细阐述了CKF的工作原理以及其实现步骤,特别是容积点生成和状态预测的具体方法。接着讨论了轮胎侧偏刚度修正策略,提出了一种基于力-滑移率关系的自适应修正方法,并展示了其在实际测试中的有效性。此外,还提到了MPC控制器中代价函数的设计细节,强调了侧偏刚度比例项的作用。最后讲述了联仿过程中遇到的问题及解决方案,如时滞补偿模块的应用,以及手写CKF相较于MATLAB自带工具箱的优势。 适合人群:从事自动驾驶、汽车工程、控制系统等领域研究的专业人士和技术爱好者。 使用场景及目标:适用于需要深入了解轮胎动态特性建模、非线性状态估计技术和先进路径跟踪控制算法的研究项目。目标是提升车辆在复杂环境下的操控性能和安全性。 其他说明:文中提供了具体的代码片段用于解释关键概念和技术实现,有助于读者更好地理解和复现实验结果。同时提醒读者注意不同仿真平台间可能存在的兼容性问题,并给出了相应的解决思路。
2025-09-18 16:41:43 535KB
1
内容概要:本文详细介绍了基于RBF(径向基函数)神经网络的机械臂轨迹跟踪控制技术及其在Matlab环境中的仿真实现。文章首先阐述了RBF神经网络的基本概念和技术优势,随后深入解析了一个具体的机械臂轨迹跟踪控制案例。通过构建和调整RBF神经网络模型,实现了对机械臂轨迹的高效、精准控制。文中还强调了高性能计算、灵活性以及实际应用价值等技术亮点,展示了该技术在工业生产中的巨大潜力。 适合人群:对机器人控制技术和神经网络感兴趣的科研人员、工程师及高校相关专业学生。 使用场景及目标:适用于希望深入了解机械臂轨迹跟踪控制机制的研究者,旨在提高机械臂在工业生产中的精度和效率。 其他说明:文章不仅提供理论知识,还结合具体实例进行了详细的仿真过程讲解,有助于读者更好地理解和掌握该项技术的实际应用。
2025-07-04 20:30:50 1.06MB
1
基于观测器的LOS制导结合反步法控制:无人船艇路径跟踪控制的Fossen模型在Matlab Simulink环境下的效果探索,无人船 无人艇路径跟踪控制 fossen模型matlab simulink效果 基于观测器的LOS制导结合反步法控制 ELOS+backstepping ,核心关键词:无人船; 无人艇; 路径跟踪控制; Fossen模型; Matlab Simulink效果; 基于观测器的LOS制导; 反步法控制; ELOS+backstepping。,基于Fossen模型的无人船路径跟踪控制:ELOS与反步法联合控制的Matlab Simulink效果分析
2025-07-02 19:13:33 89KB xhtml
1
内容概要:本文详细介绍了如何利用Fossen模型、ELOS观测器以及反步法控制器,在Matlab Simulink环境中实现无人船的路径跟踪控制。首先解释了Fossen模型将船舶运动分解为运动学和动力学两个方面,接着阐述了ELOS观测器用于实时估计环境干扰如水流漂角的作用,最后讲解了反步法控制器的设计及其递归控制机制。文中还展示了传统LOS与ELOS+反步法组合的实际性能对比,证明后者在抗干扰能力和路径跟踪精度上有显著优势。 适合人群:从事无人船研究的技术人员、自动化控制领域的研究人员、对船舶运动建模感兴趣的学者。 使用场景及目标:适用于需要提高无人船路径跟踪精度和鲁棒性的应用场景,旨在帮助开发者理解和应用先进的控制算法和技术手段,优化无人船的自主航行能力。 其他说明:文中提供了大量MATLAB/Simulink代码片段,便于读者理解和复现相关算法。同时强调了实际调试过程中需要注意的关键点,如参数选择、执行器饱和限制等。
2025-07-02 19:12:56 262KB
1
内容概要:本文深入探讨了无人船路径跟踪控制技术,特别是基于Fossen模型和ELOS+Backstepping控制方法的研究。首先介绍了Fossen模型作为描述无人船动力学的基础工具,然后详细解释了ELOS制导(基于观测器)和反步法控制的结合,最后展示了在MATLAB Simulink平台上的仿真效果。通过不同参数设置,验证了该控制方法的有效性和稳定性,即使在复杂水文环境下也能保持精准路径跟踪。 适合人群:从事无人船技术研发的专业人士、自动化控制领域的研究人员、高校相关专业师生。 使用场景及目标:适用于需要深入了解无人船路径跟踪控制原理和技术实现的人群,旨在提高无人船在复杂环境下的导航精度和稳定性。 其他说明:文中不仅提供了理论分析,还附有详细的仿真案例,便于读者理解和实践。
2025-07-02 19:11:05 334KB Simulink
1
光伏发电系统最大功率跟踪控制:电导增量法与扰动观察法的MATLAB仿真模型研究及参考文献汇编,附光伏电池说明文件,光伏发电系统最大功率跟踪控制MATLAB仿真模型(电导增量法+扰动观察法) 电导增量法最大功率跟踪控制 扰动观察法最大功率跟踪控制 提供参考文献及和光伏电池说明文件 建议使用高版本MATLAB打开 ,关键词:光伏发电系统; 最大功率跟踪控制; MATLAB仿真模型; 电导增量法; 扰动观察法; 参考文献; 光伏电池说明文件; 高版本MATLAB。,基于电导增量与扰动观察法的光伏MPPT控制策略MATLAB仿真模型研究
2025-06-18 18:36:32 248KB edge
1
内容概要:本文探讨了基于非线性模型预测控制(NMPC)与近端策略优化(PPO)强化学习在无人船目标跟踪控制中的应用及其优劣对比。首先介绍了无人船在多个领域的广泛应用背景,随后详细阐述了NMPC通过建立非线性动力学模型实现高精度跟踪的方法,以及PPO通过试错学习方式优化控制策略的特点。接着从精度与稳定性、灵活性、计算复杂度等方面对两者进行了全面比较,并指出各自的优势和局限性。最后强调了Python源文件和Gym环境在实现这两种控制方法中的重要性,提供了相关文献和程序资源供进一步研究。 适合人群:从事无人船技术研发的研究人员、工程师及相关专业学生。 使用场景及目标:适用于希望深入了解无人船目标跟踪控制技术原理并进行实际项目开发的人群。目标是在不同应用场景下选择最合适的控制方法,提高无人船的性能。 其他说明:文中不仅涉及理论分析还包含了具体的Python实现代码,有助于读者更好地掌握相关技术细节。
2025-06-05 10:25:35 527KB
1