用于mnist数据集识别,将minst数据集和算坏mnist数据集的结果进行对比。
2022-06-22 10:34:38 88KB 贝叶斯卷积神经网络
1
颜色分类leetcode BCNN 这是贝叶斯卷积神经网络的 Chainer 实现。 (Keras 和 PyTorch 也可以重新注入:,) 在这个项目中,我们假设了以下两种场景,尤其是医学成像。 使用 2D U-Net 进行二维分割/回归。 (例如,2D X 射线、腹腔镜图像和 CT 切片) 使用 3D U-Net 进行三维分割/回归。 (例如,3D CT 体积) 这是以下作品的一部分。 @article{hiasa2019automated, title={Automated muscle segmentation from clinical CT using Bayesian U-net for personalized musculoskeletal Modeling}, author={Hiasa, Yuta and Otake, Yoshito and Takao, Masaki and Ogawa, Takeshi and Sugano, Nobuhiko and Sato, Yoshinobu}, journal={IEEE Transactions on Medica
2021-12-01 15:18:38 15.63MB 系统开源
1
我们介绍了带变分推理的贝叶斯卷积神经网络,这是卷积神经网络(CNN)的一种变体,其中权重的难处理的后验概率分布是由Backprop的Bayes推断的。 我们证明我们提出的变分推断方法是如何实现的性能相当于频率论推理在几个数据集(MNIST,CIFAR10,CIFAR100),如所描述的相同结构。 贝叶斯vs频频方法中的过滤器权重分布 整个CNN的全贝叶斯视角 图层类型 该存储库包含两种类型的贝叶斯lauer实现: BBB(Backprop的Bayes): 基于。 该层分别对所有权重进行采样,然后将其与输入组合以从激活中计算出一个样本。 BBB_LRT(使用本地重新参数化技巧的Backprop进行Bayes操作): 这一层与本地重新参数伎俩结合贝叶斯通过Backprop。 这个技巧使得可以直接从激活中的分布中采样。 制作自定义贝叶斯网络? 要创建自定义贝叶斯网络,请继承layers.m
2021-12-01 15:13:56 46.78MB python pytorch bayesian-network image-recognition
1
压缩感知l1重建算法matlab代码[用于压缩感知恢复的贝叶斯卷积神经网络]。 介绍 贝叶斯卷积神经网络(BCNN)是一种新的压缩感知(CS)恢复算法,它结合了卷积神经网络(CNN)和贝叶斯推理方法。 在本文中,我们显示出在重建结果方面的显着改进,优于传统的结构化压缩传感(SCS)算法和基于ReconNet,DR2Net和LDAMP等神经网络的恢复方法。 此处提供的代码有助于重现本文中介绍的某些结果。 引文(BibTex): 如果您正在使用此代码,请引用以下论文。 @artical{BCNNs, author = {Xinjie Lan and Xin Guo and Kenneth E. Barner}, title = {Bayesian Convolutional Neural Networks for Compressed Sensing Restoration}, booktitle = {arVix:1811.04356}, month = {Nov.}, year = {2018} } 系统要求: 该软件已经在Matlab R2018a上进行了测试。 使用BCNN从CS测
2021-10-04 16:31:27 15.52MB 系统开源
1