高压直流电源广泛应用于医用X射线机,工业静电除尘器等设备。传统的工频高压 直流电源体积大、重量重、变换效率低、动态性能差,这些缺点限制了它的进一步应用。而高频高压直流电源克服了前者的缺点,已成为高压大功率电源的发展趋势。本文对应用在高输出电压大功率场合的开关电源进行研究,对主电路拓扑、控制策略、工艺结构等方面做出详细讨论,提出实现方案。
2025-09-22 14:15:19 1.67MB LCC谐振,高压电源,连续,断续
1
LCC谐振变换器在MATLAB和PLECS两种仿真软件中的开环与闭环仿真过程。首先简述了LCC谐振变换器的基本概念及其应用场景,然后分别讲解了在MATLAB和PLECS中如何搭建LCC谐振变换器的开环与闭环模型,设定了不同的输入输出电压参数(如250V与41kV,530V与66kV),并提供了详细的仿真步骤和示例代码。最后,通过对仿真结果的分析,整理成Word文档,帮助读者更好地理解和应用仿真结果。 适合人群:从事电力电子研究和技术开发的专业人士,尤其是对LCC谐振变换器感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解LCC谐振变换器的工作原理及其仿真的技术人员。通过学习本文,读者能够掌握在MATLAB和PLECS中进行LCC谐振变换器建模与仿真的具体方法,从而为实际项目提供理论支持和技术指导。 其他说明:文中不仅提供了详细的仿真步骤和示例代码,还附带了Word文档,记录了仿真过程中遇到的问题及解决方案,有助于读者快速上手并解决实际操作中的难题。
2025-09-20 10:26:45 1.04MB 电力电子 MATLAB PLECS
1
LCC谐振变换器在MATLAB和PLECS两种仿真软件中的开环与闭环仿真过程。首先简述了LCC谐振变换器的基本概念及其应用场景,然后分别讲解了在MATLAB和PLECS中如何搭建LCC谐振变换器的开环与闭环模型,设定了不同的输入输出电压参数(如250V与41kV,530V与66kV),并提供了详细的仿真步骤和示例代码。最后,通过对仿真结果的分析,整理成Word文档,帮助读者更好地理解和应用仿真结果。 适合人群:从事电力电子研究和技术开发的专业人士,尤其是对LCC谐振变换器感兴趣的工程师和研究人员。 使用场景及目标:适用于希望深入了解LCC谐振变换器的工作原理及其仿真的技术人员。通过学习本文,读者能够掌握在MATLAB和PLECS中进行LCC谐振变换器建模与仿真的具体方法,从而为实际项目提供理论支持和技术指导。 其他说明:文中不仅提供了详细的仿真步骤和示例代码,还附带了Word文档,记录了仿真过程中遇到的问题及解决方案,有助于读者快速上手并解决实际操作中的难题。
2025-09-20 10:18:44 740KB 电力电子 MATLAB PLECS
1
LCC谐振变换器多种仿真参数详解:开环与闭环、MATLAB与plecs仿真,输入输出电压分析,LCC谐振变换器多种仿真及参数详解:涵盖开环与闭环、MATLAB与Plecs仿真,附Word文档说明,LCC谐振变器开环和闭环仿真都有,MATLAB和plecs仿真都有,有两种参数,输入输出分别是250V和41kV,还有就是530V 66kV,并且附有Word文档说明。 ,LCC谐振变换器; 仿真类型(开环、闭环); MATLAB仿真; PLECS仿真; 参数(250V、41kV; 530V、66kV); Word文档说明。,LCC谐振变换器仿真研究:多参数对比及高电压下的MATLAB与PLECS仿真分析
2025-09-20 10:18:16 2.01MB 数据结构
1
内容概要:本文详细介绍了大厂LLC谐振变换器的设计思路和技术细节。首先探讨了谐振参数计算的关键函数,如谐振频率、增益曲线等,并强调了M值选择的重要性。接着分析了死区时间的动态调整机制,展示了如何根据母线电压和电流特性优化死区时间设置。随后讨论了软启动策略,包括频率斜坡、移相控制以及过流保护确认。此外,还提供了波形诊断脚本,用于检测ZVS实现情况和谷底导通时机。文中还提到驱动电路布局的重要性,指出PCB设计规范对于稳定性的关键作用。最后,介绍了基于Python和PLECS的自动化参数计算和仿真验证流程,以及一些实用的设计技巧,如动态死区补偿和轻载跳周期模式。 适合人群:从事电力电子设计的工程师,尤其是对LLC谐振变换器感兴趣的中级及以上水平的研发人员。 使用场景及目标:帮助工程师理解和应用大厂的实际设计经验和优化方法,提高LLC谐振变换器的设计效率和性能。具体应用场景包括但不限于电源管理、高效能转换器设计等领域。 其他说明:文章不仅涵盖了理论公式,还包括了大量的实战经验和代码实例,有助于读者将理论知识转化为实际工程能力。同时提醒读者关注PCB布局和元件选型等细节,这些都是影响最终产品性能的重要因素。
2025-09-18 20:23:16 1.62MB
1
内容概要:本文详细介绍了频率控制(PFM)与占空比控制(PWM)混合调制的LLC全桥谐振变换器闭环仿真模型。LLC全桥谐振变换器因其能够实现软开关、提升效率和降低损耗,在电源领域非常重要。文中通过MATLAB/Simulink搭建了主电路和控制部分,展示了如何根据输出电压和参考电压的误差选择不同的控制模式(PFM、PWM或混合模式),并提供了简化的MATLAB伪代码示例。通过调整谐振元件参数和控制模式切换阈值,可以优化变换器性能。 适合人群:从事电源系统研究的技术人员、高校师生以及对电力电子仿真感兴趣的爱好者。 使用场景及目标:适用于需要深入了解和研究LLC全桥谐振变换器及其控制方式的研究人员和技术开发者,旨在帮助他们掌握PFM与PWM混合调制的具体实现方法,从而提高电源系统的效率。 其他说明:文中提供的MATLAB伪代码为简化版本,实际应用时需根据具体情况进行调整和完善。
2025-09-04 08:47:40 464KB 电力电子 控制系统仿真
1
半桥与全桥LLC仿真中的谐振变换器四种控制方式探索:频率控制PFM、PWM、移相控制PSM及混合控制PFM+PSM在Plecs、Matlab Simulink环境下的应用。,半桥与全桥LLC仿真中的谐振变换器四种基本控制方式:频率控制PFM、PWM控制、移相控制PSM与混合控制PFM+PSM在plecs、matlab及simulink环境下的应用。,半桥 全桥LLC仿真,谐振变器的四种基本控制方式。 主要有 频率控制PFM PWM控制 移相控制PSM 混合控制PFM+PSM 运行环境有plecs matlab simulink ,半桥; 全桥LLC仿真; 谐振变换器; 控制方式:频率控制PFM; PWM控制; 移相控制PSM; 混合控制PFM+PSM; 运行环境:plecs; matlab; simulink。,半桥全桥LLC仿真研究:四种谐振变换器控制方式探索运行环境:Plecs与Matlab Simulink的比较与运用
2025-07-16 16:46:13 3.35MB istio
1
在当今电子设计领域,高效、稳定、小型化的电源系统成为技术发展的必然趋势,半桥LLC谐振变换器以其优越的性能在众多开关电源技术中脱颖而出。半桥LLC谐振变换器是一种典型的高频变压器设计,它结合了半桥结构与LLC谐振网络,被广泛应用于通信电源、电子设备、航天及电动汽车充电站等对性能要求极高的领域。 我们来了解一下半桥LLC型谐振变换器的拓扑结构。该变换器由四个主要部分构成:输入电源、谐振电路、变压器以及输出电路。在这四个部分中,谐振电路是整个变换器的核心。它不仅决定了整个系统的能量传输效率,还影响到输出电压的稳定性。通过精心设计的谐振电路,可以有效减少高频运行时的损耗,并降低对变压器设计的要求。 接下来,我们探讨一下高频变压器的设计过程,这是半桥LLC型谐振变换器设计中的重中之重。在设计过程中,我们需要按照以下步骤进行: 1. 确定变压器的基本参数,包括变压器的类型、尺寸、所用材料、绕组数等。这些参数将决定变压器的总体性能和适用范围。 2. 精心选择合适的磁芯材料。磁芯材料的选择对于高频变压器性能有着决定性的影响,它关系到变压器在高频运行时的损耗大小、热稳定性及整体效率。 3. 设计绕组结构。绕组结构的设计关乎到变压器的性能表现,良好的绕组结构设计能够进一步优化磁通分布,减少漏感和分布电容,从而提高变压器的工作效率和可靠性。 4. 优化变压器设计。设计师需要通过计算机模拟和实际测试来不断调整和优化设计方案,力求在保证性能的同时减小尺寸,提高效率,确保设计出的变压器在实际工作中既高效又可靠。 AP法(即铁氧体磁芯的功率损耗法)在高频变压器设计中具有广泛的应用。AP法是一种有效的设计工具,能够帮助设计师快速确定变压器的基本参数,如尺寸、材料和绕组数等,同时它还能指导设计师进行变压器的优化设计,以提升变压器的效率和可靠性。 应用AP法和优化设计,赵慧超在其论文《半桥LLC谐振电路知识详解-半桥LLC型谐振变换器的高频变压器设计》中展示了具体的高频变压器设计结果:选定了EE-100型号的变压器,绕组数为59和80,采用了18号导线。设计出的变压器效率高达95%以上,损耗仅为16.187瓦。 半桥LLC型谐振变换器的高频变压器设计不仅要求工程师具备扎实的理论基础和丰富的实践经验,还需运用现代计算机辅助设计工具。通过这样精密的设计流程,可以解决开关电源在高频运行时遇到的诸如高频损耗、输出电压不稳定、发热量大等常见问题。这样的设计方法不仅提高了电源系统的整体性能,而且对于推动电源技术的进一步革新有着积极的意义。在电子设计领域,这种对电源效率和稳定性的不懈追求,将驱动更多创新技术的涌现,为各行各业提供更为高效、可靠、便捷的电源解决方案。
2025-07-11 15:45:36 630KB 电子设计
1
半桥闭环LLC谐振变换器仿真研究:软启动策略、PI控制与柔化给定信号下的波形对比及性能分析,半桥闭环LLC谐振变器仿真,含采用软启动策略,pi控制,柔化给定信号,三种方式波形对比波形图 50一类。 ,核心关键词:半桥闭环LLC谐振变换器仿真; 软启动策略; PI控制; 柔化给定信号; 波形对比; 波形图; 50一类。,"半桥LLC谐振变换器仿真:软启动策略与Pi控制波形对比研究" 在电力电子技术领域,半桥闭环LLC谐振变换器以其高效率、高功率密度、良好动态性能等优势,在电源转换中扮演着重要角色。本文对半桥闭环LLC谐振变换器进行了仿真研究,特别关注了软启动策略、PI控制以及柔化给定信号对波形的影响及其性能分析。 软启动策略作为解决开关电源中启动过程电流冲击的有效手段,其作用在于避免大电流对开关器件的损害,延长器件的使用寿命。软启动策略的实施能够在变换器启动瞬间,通过逐渐增加输入电压来控制输出电压的上升速率,从而减小电流冲击。在半桥闭环LLC谐振变换器中,软启动策略的引入可以有效提升设备的启动性能,减小启动过程中的电流应力,为后续稳定的电力转换打下坚实基础。 PI控制(比例-积分控制)在变换器的控制策略中广泛被应用。PI控制器通过对误差信号进行比例和积分运算来产生控制量,使得系统的输出能够快速、准确地跟踪参考信号,保持稳定。在半桥闭环LLC谐振变换器中,PI控制被用来调节谐振频率与开关频率的匹配程度,从而实现对输出电压和电流的精确控制。PI控制的优化直接影响到变换器的动态响应和稳定性。 再者,柔化给定信号是一种控制策略,其目的在于减少输出信号的突变,减少电磁干扰和机械应力,提高设备工作的稳定性和可靠性。在半桥闭环LLC谐振变换器中,柔化给定信号的策略可以降低由开关动作引起的电压和电流脉动,降低电磁干扰,提高系统的整体性能。 通过对比软启动策略、PI控制和柔化给定信号三种方式下的波形,可以直观地看出各自对变换器性能的具体影响。波形对比不仅能够反映不同控制策略对输出电压和电流的调节效果,还可以揭示其对变换器动态响应、稳定性等方面的影响。波形图是分析和评估变换器性能的重要工具,通过对波形图的分析,可以深入理解不同控制策略的优劣。 在电力电子技术迅速发展的今天,对于半桥闭环LLC谐振变换器的深入探索和研究具有重要的现实意义。仿真技术的应用使得变换器的设计和优化工作在没有实际制作硬件的情况下即可进行,节约了时间和成本,加速了产品的开发进程。通过仿真,可以提前发现设计中的问题,为实际的产品开发提供参考和指导。 半桥闭环LLC谐振变换器的仿真研究涉及多个方面的内容,包括软启动策略的实现、PI控制的优化以及柔化给定信号的应用。通过对这些控制策略的深入分析和波形对比,可以更好地理解它们对变换器性能的影响,为变换器的优化设计和性能提升提供科学依据。
2025-07-10 10:48:36 369KB
1
内容概要:本文深入探讨了半桥闭环LLC谐振变换器仿真中的三大关键技术:软启动策略、PI控制和柔化给定信号。首先介绍了软启动策略的作用及其代码实现,旨在通过逐步增加输入信号来避免启动时的电流冲击。其次详细解释了PI控制的工作原理,展示了如何通过比例和积分项调整控制信号,从而稳定输出电压。最后讨论了柔化给定信号的方法,通过低通滤波使输入信号更加平滑,减少了突变的影响。文中还提供了具体的Matlab和Python代码示例,并通过波形对比直观展示了不同方法的效果。 适合人群:从事电力电子设计、电源管理系统的工程师和技术爱好者。 使用场景及目标:适用于需要理解和优化半桥闭环LLC谐振变换器性能的设计人员,帮助他们掌握软启动、PI控制和柔化给定信号的应用技巧,提高系统的稳定性和可靠性。 其他说明:文中提到的实际案例和仿真数据有助于读者更好地理解理论知识并应用于实际项目中。同时提醒读者在实际应用中需要注意参数的选择和调整,以确保最佳效果。
2025-07-10 10:45:47 599KB
1