摘 要 : 针对海天背景下红外舰船目标识别提出了一种基于机器学习的分类算法。 该算法首先利用分 割 算法提取红外图像中的连通区域,并对原图相应的位 置进行标记和归一 化处理 ,然后利 用HOG 特 征提 取 标记 区域 的 高维特 征 向量 ,用线 下样 本库 训 练得 到 的 SV M 分 类器 对所提 取 的 HOG 特 征 进行 高维特征 空间的分类 ,识别 目标和干扰。 仿真实验表明 ,该算法具有 良好的性能,在复杂海天干扰背景下能够有效地识别红外舰船目标 。
2022-11-18 16:01:52 1.14MB SVM  红外舰船 目标识别
1
:SAR 图像舰船目标识别是 SAR 图像海洋监视应用中的一项关键技术。在广泛文献调研的基础上,首先建立了 SAR 图像舰船目标识别的主要流程; 接着对用于 SAR 图像舰船目标识别的众多特征进行归纳整理,分析了其物理意义及优缺 点; 然后对用于 SAR 图像舰船目标的分类算法进行了较为全面的综述; 最后分析了目前研究中所面临的主要问题,展望了 进一步研究的主要方向
2021-10-22 21:59:10 168KB SAR,舰船
1
针对海面背景舰船目标单一波段图像识别率低的问题, 提出了一种基于卷积神经网络(CNN)的融合识别方法。该方法提取可见光、中波红外和长波红外3个波段舰船目标特征进行融合识别。模型主要分为3个步骤:通过设计的6层CNN, 同时对三波段图像进行特征提取; 利用基于互信息的特征选择方法对串联的三波段特征向量按照重要性进行排序, 并按照图像清晰度评价指标选取固定长度的特征向量作为目标识别依据; 通过额外的2个全连接层和输出层进行回归训练。采用自建的三波段舰船图像数据库进行模型的训练和测试, 共包含6类目标, 5000余张图像。实验结果表明, 本文方法识别率达到84.5%, 与单波段识别方法相比有明显提升。
2021-02-04 13:12:29 8.49MB 机器视觉 目标识别 特征融合 卷积神经
1
matlab完整可运行,含实验报告,含评价参数,含测试图片
2019-12-21 20:46:17 4.89MB 舰船目标识别
1