第七章 航天器、地面交通工具和轮船 §§§§ 7.07.07.07.0 概述 本章论述的是无轨运载工具,对如何设置航天器、地面交通工具和轮船的基本和图形属性 及其访问限制等工作进行了说明,同时也讲解了如何利用航天器、地面交通工具和轮船来获取 分析工作所需的信息。 本章内容 RouteRouteRouteRoute 7.1 AttitudeAttitudeAttitudeAttitude 7.2 外部姿态文件 7.2.1 图形属性:AttributesAttributesAttributesAttributes 7.3 图形属性:DisplayDisplayDisplayDisplay TimesTimesTimesTimes 7.4 航天器、地面交通工具和轮船的限制 7.5 高级的航天器的限制 7.6 §§§§ 7.17.17.17.1 RouteRouteRouteRoute 为了定义航天器、地面交通工具和轮船的路线,可以打开该对象的 BasicBasicBasicBasic PropertiesPropertiesPropertiesProperties窗口, 在 RouteRouteRouteRoute 域中,用户可以定义对象的轨迹,在面板的顶部,StartStartStartStart TimeTimeTimeTime 和 StopStopStopStop TimeTimeTimeTime 规定了航 天器、地面交通工具和轮船的运行时间,StartStartStartStart TimeTimeTimeTime 和 StopStopStopStop TimeTimeTimeTime 的默认值是情节中的起始时 间,StepStepStepStep SizeSizeSizeSize 域中则定义了输出星历点的时间间隔,其默认值是 60 秒。 用户可以选择 GreatGreatGreatGreat ArcArcArcArc PropagatorPropagatorPropagatorPropagator 或外部文件的路线信息,GreatGreatGreatGreat ArcArcArcArc PropagatorPropagatorPropagatorPropagator 定义了航天器、地面交通工具和轮船在给定海拔高度处沿地球表面运动的点,航途基准点描 绘了路线的经度、纬度、海拔高度和速度等信息。每个位于地球大圆平面上的圆弧路径都可以 用来连接航途基准点。 每个航途基准点都包括经度、纬度、海拔高度、速度和旋转半径等信息,为了定义航途基 准点,在位于WaypointWaypointWaypointWaypointTableTableTableTable之下和其对应的五个注释框内输入相应的数据,当输入航途基准 点的所有元素后,使用EditEditEditEdit ModeModeModeMode域中的InsertInsertInsertInsert PointPointPointPoint选项,就会在位于注释框之上的WaypoinWaypoinWaypoinWaypointttt TableTableTableTable中出现相应的点,每一排描述的都是航天器、地面交通工具和轮船的路径中的航途基准 点。
2025-06-03 10:14:43 2.05MB
1
内容概要:本文详细介绍了伪谱法在航天器姿态优化中的应用。伪谱法通过将连续时间问题转化为离散时间问题,利用多项式近似将复杂的动态优化问题转化为代数方程,从而简化计算。文中通过具体的Python代码实例展示了如何使用伪谱法进行姿态优化,包括欧拉方程、四元数微分方程、Legendre多项式、微分矩阵以及优化求解的具体步骤。此外,文章还讨论了伪谱法在处理路径约束方面的优势及其在实际工程中的应用前景。 适合人群:航空航天领域的研究人员、工程师和技术爱好者,尤其是对航天器姿态控制和优化算法感兴趣的读者。 使用场景及目标:适用于需要精确控制航天器姿态的任务,如卫星姿态调整、深空探测等。主要目标是通过伪谱法优化姿态控制,减少燃料消耗,提高控制精度。 其他说明:尽管伪谱法在姿态优化中有显著优势,但在实际应用中还需考虑数值稳定性和计算精度等问题。文中提供的代码仅为示例,在实际工程项目中需进一步优化和完善。
2025-04-15 10:44:07 842KB
1

基于一致性算法, 在有向通讯拓扑下, 研究存在状态约束的多航天器系统分布式有限时间姿态协同跟踪控制问题. 在仅有部分跟随航天器可以获取领航航天器状态, 并且跟随航天器之间存在不完全信息交互的情形下, 设计了分布式快速终端滑模面, 提出了不依赖于模型的分布式有限时间姿态协同跟踪控制律. 根据有限时间Lyapunov 稳定性定理, 证明了系统的状态在有限时间内收敛于领航航天器状态的小邻域内. 最后通过仿真算例验证了所提出算法的有效性.

2024-09-05 22:40:41 226KB
1
针对航天器姿态控制系统中的陀螺故障,利用控制输入信息,依据故障信号频率,使用LMI分别设计多组H∞最优故障观测器。该方法无需其他测量校验,能够克服传统诊断方法对星敏感器的依赖;同时扩展H∞观测器的设计自由度,降低惯量不确定性对系统诊断精度的影响。在Matlab/Simulink环境下对航天器姿态系统进行了仿真,仿真结果表明:提出的控制算法处理航天器陀螺故障问题的有效性和可行性。
2024-01-16 11:16:54 925KB 行业研究
1
orbitdynamics a C++ program for orbit dynamics, include compments: orbit propagator formation maneuver etc RKF78 propagator gravity field file supported DE405/DE421 for planet's ephemeris MSISE-00 atmosphere model virtual base class and easy to extend use armadillo library as vector and matrix operation use hdf5 data file C++轨道动力学计算程序 卫星、航天器轨道动力学的精密计算,包括主要特征包括: RKF78高精度积分器 支持地球引力场系数文件 DE405/DE421行
1
近年来,空间光学遥感成像技术发展迅速,对地观测任务对航天器成像能力 的要求也越来越高。为进一步提升航天器对地成像能力,一种基于光学载荷旋转 扫描成像的超宽幅成像技术被提出。该技术通过使载荷以24rpm 左右的较低速 度旋转,在不牺牲图像分辨率的前提下,能够让光学遥感航天器的扫描幅宽提升 至上千公里,极大地提升了航天器的成像能力。但是,这种提升同时也带来了一 些动力学与控制问题。本文将针对这些问题开展研究。
1
SPART 是一个 MATLAB/SIMULINK 开源建模和控制工具包,用于带有机器人操纵器(即带有浮动底座的操纵器)的轨道航天器。 SPART 被组织为 MATLAB 函数和 Simulink 模块的集合。 这些可用于构建工厂,正向/反向动态求解器和控制器。 SPART 允许计算: -运动学 - 旋转矩阵、位置向量和齐次变换矩阵。 - 微分运动学 - 雅可比和操作空间速度。 -Dynamics - 广义惯性和对流惯性矩阵。 -正向/反向动力学(包括浮动基本情况)。 此外,SPART 支持: -所有运动学和动态幅度的符号计算。 - 自动代码生成支持(例如,对于 Simulink 或 ROS 节点)。 -URDF 文件(实验支持)。 spart.readthedocs.org 提供了最新的文档和教程。
2022-09-02 15:57:43 5.88MB matlab
1
航天器的姿态动力学与控制》,[美] Vladimir A.Chobotov,1992.01
2022-07-28 18:43:16 3.28MB 航天器 姿态 动力学 控制
1
最有控制解决具体问题的实例 可以参考 里面包括5个不同组分别做的内容
2022-07-02 14:47:45 2.88MB 航天器姿态控制 倒立摆 ppt+matlab仿真
1