针对自治水下机器人(AUV) 研究中的多机器人多任务分配问题, 提出一种基于自组织映射(SOM) 神经网络
的多AUV多目标分配策略. 将目标点的位置坐标作为SOM神经网络的输入向量进行自组织竞争计算, 输出为对应
的AUV机器人, 从而控制一组AUV在不同的地点完成不同的任务, 使机器人按照优化的路径规则到达指定的目标
位置. 为了表明所提出算法的有效性, 给出了二维、三维作业环境中的仿真实验结果.

1
BELMKN:贝叶斯极限学习机Kohonen网络 无监督的极限学习机(ELM)是一种用于特征提取的非迭代算法。 该方法应用于IRIS数据集以进行非线性特征提取,聚类预测,最后使用k-means进行聚类。 客观的 要使用Unsuoervised Extreme Learning Machine执行非线性特征学习,使用贝叶斯信息准则(BIC)预测数据集中的聚类数,最后使用k-means,自组织图/ Kohonen网络和EM算法进行聚类 模组 无监督的极限学习机:在此模块中,使用无监督的极限学习机执行数据集的特征提取。 这是具有单个隐藏层的非迭代算法,其中输入层和隐藏层之间的权重被随机初始化,并且使用目标函数计算隐藏层和输出层之间的权重。 因此,可以保证收敛于全局最小值。 贝叶斯信息准则:贝叶斯信息准则是一种统计方法,使用d来找出数据集中的聚类数。 它使用期望最大化(EM)算法来查找数据集中的
1
颜色分类leetcode SuSi:Python 中的监督自组织地图 用于无监督、监督和半监督自组织映射 (SOM) 的 Python 包 描述 我们展示了 Python 的 SuSi 包。 它包括用于无监督、监督和半监督任务的全功能 SOM: SOMClustering:用于聚类的无监督 SOM SOMRegressor:(半)监督回归 SOM SOMClassifier:(半)监督分类 SOM 执照: 作者: 引文: 查看和在文件中 文档: 安装: 纸: 安装 点 pip3 install susi conda conda install -c conda-forge susi 可以在 中找到更多信息。 例子 可以在 中找到代码示例的集合。 可以在此处找到作为 Jupyter Notebook 的代码示例: 常见问题 我应该如何设置 SOM 的初始超参数? 有关超参数的更多详细信息,请参见 。 如何优化超参数? SuSi 超参数可以优化,例如,使用 ,因为 SuSi 包是根据几个 scikit-learn 指南开发的。 引文 包含两个参考的 bibtex 文件在 . 纸: FM R
2022-05-06 15:53:49 492KB 系统开源
1
3、自组织映射聚类(SOM) 自组织映射聚类(Self-Organizing Map, SOM),是由T.Konohen 于1980 年提出的模型,属于非监督学习的神经网络聚类,与K-means 相似,采用SOM 聚类算法之前,也要首先估计出想要得到的类的个数。在SOM 神经网络中,输出层的神经元是以列阵的方式排列于一维或二维的空间中的。根据当前输入向量与神经元的竞争,利用欧氏距离,寻找最短距离当作最有效神经元,以求得调整向量神经元的机会,而其他神经元也可以彼此学习。而最后的神经元就可以根据输入向量的特征,以拓扑结构展现于输出空间中。
2022-04-14 09:59:55 6.48MB 聚类 分类
1
som matlab代码自组织图 用于自组织地图(SOM)等的Matlab工具箱。 SOM Toolbox 2.0是用于实现自组织地图算法的Matlab 5的软件库,由Esa Alhoniemi,Johan Himberg,Jukka Parviainen和Juha Vesanto版权所有(C)1999。 运行SOM代码 运行主Matlab文件需要该目录中的所有文件:'data2kde2som'。 该文件将分类(即合并)的数据转换为内核密度估计,然后通过Vesanto等人的SOM功能运行该估计。 需要两个(CSV)输入来运行“ data2kde2som” :( 1)bin_midpoints(分类数据的每个bin的中点)和(2)适合您的bin的数据(每行代表每个点的数据分布)。 执行主成分分析(PCA) 还有一个名为“ pca_surrey”的文件,对两个文件执行PCA(与SOM输出进行比较)。
2021-12-24 20:00:11 420KB 系统开源
1
自组织映射(SOM)网络,也被称为 Kohonen 网络或者胜者独占单元(WTU),在大脑中,不同的感官输入以拓扑顺序的方式呈现,是受人脑特征启发而提出的一种非常特殊的神经网络。 与其他神经网络不同,SOM 神经元之间并不是通过权重相互连接的,相反,它们能够影响彼此的学习。SOM 最重要的特点是神经元以拓扑方式表示所学到的输入信息。 在 SOM 中,神经元通常放置在(一维或二维)网格的节点处,更高的维数也可以用,但实际很少使用。网格中的每个神经元都可以通过权重矩阵连接到所有输入单元。
2021-12-16 10:36:13 13KB tensorflow SOM 自组织映射 人脸分类
1
简单的自组织映射算法分类矩阵中的数据,使用matlab编写。
2021-10-14 20:11:25 2KB SOM MATLAB
1
bp反向传播神经网络 som自组织映射神经网络 matlab gui程序 及ppt 讲解
1
SOM(Self Organizing Maps ) 的目标是用低维目标空间的点来表示高维空间中的点,并且尽可能保持对应点的距离和邻近关系(拓扑关系)。该算法可用于降维和聚类等方面,此代码主要用于实现聚类。
2021-04-07 14:19:25 6KB SOM 聚类算法 自组织映射网 算法
1
VC++实现的自组织映射SOM方法图像分类聚类算法源代码
2021-04-02 17:00:58 691KB 聚类分析 图像分割
1