颜色分类leetcode-susi:SuSi:用于无监督、监督和半监督自组织映射(SOM)的Python包

上传者: 38656741 | 上传时间: 2022-05-06 15:53:49 | 文件大小: 492KB | 文件类型: ZIP
颜色分类leetcode SuSi:Python 中的监督自组织地图 用于无监督、监督和半监督自组织映射 (SOM) 的 Python 包 描述 我们展示了 Python 的 SuSi 包。 它包括用于无监督、监督和半监督任务的全功能 SOM: SOMClustering:用于聚类的无监督 SOM SOMRegressor:(半)监督回归 SOM SOMClassifier:(半)监督分类 SOM 执照: 作者: 引文: 查看和在文件中 文档: 安装: 纸: 安装 点 pip3 install susi conda conda install -c conda-forge susi 可以在 中找到更多信息。 例子 可以在 中找到代码示例的集合。 可以在此处找到作为 Jupyter Notebook 的代码示例: 常见问题 我应该如何设置 SOM 的初始超参数? 有关超参数的更多详细信息,请参见 。 如何优化超参数? SuSi 超参数可以优化,例如,使用 ,因为 SuSi 包是根据几个 scikit-learn 指南开发的。 引文 包含两个参考的 bibtex 文件在 . 纸: FM R

文件下载

资源详情

[{"title":"( 60 个子文件 492KB ) 颜色分类leetcode-susi:SuSi:用于无监督、监督和半监督自组织映射(SOM)的Python包","children":[{"title":"susi-main","children":[{"title":"MANIFEST.in <span style='color:#111;'> 57B </span>","children":null,"spread":false},{"title":"README.rst <span style='color:#111;'> 6.11KB </span>","children":null,"spread":false},{"title":".coveragerc <span style='color:#111;'> 25B </span>","children":null,"spread":false},{"title":"pyproject.toml <span style='color:#111;'> 314B </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"SOMUtils.rst <span style='color:#111;'> 68B </span>","children":null,"spread":false},{"title":"SOMClassifier.rst <span style='color:#111;'> 124B </span>","children":null,"spread":false},{"title":"conf.py <span style='color:#111;'> 6.02KB </span>","children":null,"spread":false},{"title":"SOMClustering.rst <span style='color:#111;'> 124B </span>","children":null,"spread":false},{"title":"install.rst <span style='color:#111;'> 853B </span>","children":null,"spread":false},{"title":"citation.rst <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"changelog.rst <span style='color:#111;'> 30B </span>","children":null,"spread":false},{"title":"SOMPlots.rst <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"SOMRegressor.rst <span style='color:#111;'> 122B </span>","children":null,"spread":false},{"title":"hyperparameters.rst <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"examples.rst <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 580B </span>","children":null,"spread":false},{"title":"index.rst <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"faqs.rst <span style='color:#111;'> 963B </span>","children":null,"spread":false},{"title":"_static","children":[{"title":"susi_logo.png <span style='color:#111;'> 90.10KB </span>","children":null,"spread":false},{"title":"susi_logo_small.png <span style='color:#111;'> 19.10KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":".github","children":[{"title":"workflows","children":[{"title":"tests_and_linting.yml <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"update_guide.yml <span style='color:#111;'> 823B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"meta.yaml <span style='color:#111;'> 953B </span>","children":null,"spread":false},{"title":"tests","children":[{"title":"test_SOMRegressor.py <span style='color:#111;'> 5.83KB </span>","children":null,"spread":false},{"title":"test_MultiOutput.py <span style='color:#111;'> 561B </span>","children":null,"spread":false},{"title":"test_SOMClustering.py <span style='color:#111;'> 17.97KB </span>","children":null,"spread":false},{"title":"test_SOMEstimator.py <span style='color:#111;'> 670B </span>","children":null,"spread":false},{"title":"test_SOMClassifier.py <span style='color:#111;'> 7.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"bibliography.bib <span style='color:#111;'> 730B </span>","children":null,"spread":false},{"title":"guide","children":[{"title":".vuepress","children":[{"title":"config.js <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"public","children":[{"title":"assets","children":[{"title":"favicons","children":[{"title":"apple-icon.png <span style='color:#111;'> 11.19KB </span>","children":null,"spread":false},{"title":"ms-icon-144x144.png <span style='color:#111;'> 9.14KB </span>","children":null,"spread":false},{"title":"manifest.json <span style='color:#111;'> 720B </span>","children":null,"spread":false},{"title":"favicon-32x32.png <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"favicon-16x16.png <span style='color:#111;'> 1.25KB </span>","children":null,"spread":false},{"title":"browserconfig.xml <span style='color:#111;'> 281B </span>","children":null,"spread":false},{"title":"favicon.ico <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"requirements.txt <span style='color:#111;'> 403B </span>","children":null,"spread":false},{"title":"susi","children":[{"title":"SOMUtils.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"SOMClassifier.py <span style='color:#111;'> 17.20KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 368B </span>","children":null,"spread":false},{"title":"SOMEstimator.py <span style='color:#111;'> 17.00KB </span>","children":null,"spread":false},{"title":"SOMClustering.py <span style='color:#111;'> 29.13KB </span>","children":null,"spread":false},{"title":"SOMRegressor.py <span style='color:#111;'> 5.38KB </span>","children":null,"spread":false},{"title":"SOMPlots.py <span style='color:#111;'> 6.29KB </span>","children":null,"spread":false}],"spread":true},{"title":"examples","children":[{"title":"SOMRegressor_multioutput.ipynb <span style='color:#111;'> 106.89KB </span>","children":null,"spread":false},{"title":"SOMRegressor.ipynb <span style='color:#111;'> 86.06KB </span>","children":null,"spread":false},{"title":"SOMClustering.ipynb <span style='color:#111;'> 164.79KB </span>","children":null,"spread":false},{"title":"SOMRegressor_semisupervised.ipynb <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"SOMClassifier.ipynb <span style='color:#111;'> 74.61KB </span>","children":null,"spread":false},{"title":"plots","children":[{"title":"emptyfileforgit.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"salinas","children":[{"title":"emptyfileforgit.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"pickles","children":[{"title":"emptyfileforgit.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"SOMClassifier_semisupervised.ipynb <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false}],"spread":true},{"title":"setup.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"CHANGELOG.rst <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明