基于传统图像分割方法的Matlab肺结节提取系统:从CT图像分割肺结节并评估分割效果,附GUI人机界面版本及主函介绍,Matlab肺结节分割(肺结节提取)源程序,也有GUI人机界面版本。 使用传统图像分割方法,非深度学习方法。 使用LIDC-IDRI数据集。 工作如下: 1、读取图像。 读取原始dicom格式的CT图像,并显示,绘制灰度直方图; 2、图像增强。 对图像进行图像增强,包括Gamma矫正、直方图均衡化、中值滤波、边缘锐化; 3、肺质分割。 基于阈值分割,从原CT图像中分割出肺质; 4、肺结节分割。 肺质分割后,进行特征提取,计算灰度特征、形态学特征来分割出肺结节; 5、可视化标注文件。 读取医生的xml标注文件,可视化出医生的标注结果; 6、计算IOU、DICE、PRE三个参数评价分割效果好坏。 7、做成GUI人机界面。 两个版本的程序中,红框内为主函数,可以直接运行,其他文件均为函数或数据。 ,核心关键词: Matlab; 肺结节分割; 肺结节提取; 源程序; GUI人机界面; 传统图像分割; 非深度学习方法; LIDC-IDRI数据集; 读取图像; 图像增强; Gam
2025-05-16 22:21:33 312KB scss
1
这是一个python的肺结节分割代码,是我最近修改过的代码,希望给初学者提供参考,为大家提供思路。欢迎大家下载参考。希望可以给大家帮助
2023-02-14 16:40:13 1.71MB python 肺结节 分割
1
卷 积 神 经 网 络 的 语 义 分 割 模 型 未 有 效 利 用 特 征 权 重 信 息 ,导 致 在 医 学 图 像 复 杂 场 景 中 分 割 边界出现欠分割现象。针对该问题,基于融合自适应加权聚合策略提出一种改进的 U-Net++网络,并将其 应 用 于 电 子 计 算 机 断 层 扫 描 影 像 肺 结 节 分 割 。 该 模 型 首 先 在 卷 积 神 经 网 络 中 提 取 出 不 同 深 度 特 征语义级别的信息,再结合权重聚合模块,自适应地学习各层特征的权重,然后将学习得到的权重加载到各个特征层上采样得到的分割图以得到最终的分割结果。在 LIDC 数据集和重庆大学附属肿瘤医院肺部 电 子 计 算 机 断 层 扫 描 数 据 集 上 进 行 了 分 割 实 验 ,所 提 方 法 的 交 叉 比 在 两 个 数 据 集 上 分 别 可 达 到80.59% 和 87.40%、骰子系数分别可达到 88.23% 和 90.83%。相比 U-Net 和 U-Net++方法,该算法有效提升了图像分割性能。本文方法能在肿瘤微小细节上实现精确分割 ,较好地解决了肺结节
2022-05-27 21:05:47 1.67MB U-Net
1
基于深度学习的肺结节分割与良恶性分类计算机探讨.docx
2021-10-08 23:11:35 270KB C语言
准确分割肺结节在临床上具有重要意义。计算机断层扫描(computer tomography,CT)技术以其成像速度快、图像分辨率高等优点广泛应用于肺结节分割及功能评价中。为了进一步对肺部CT影像中的肺结节分割方法进行探索,本文对基于CT影像的肺结节分割方法研究进行综述。
2021-04-24 18:06:27 2.6MB 肺结节分割 研究综述
1