基于改进 U-Net++的 CT 影像肺结节分割算法

上传者: 42483745 | 上传时间: 2022-05-27 21:05:47 | 文件大小: 1.67MB | 文件类型: PDF
卷 积 神 经 网 络 的 语 义 分 割 模 型 未 有 效 利 用 特 征 权 重 信 息 ,导 致 在 医 学 图 像 复 杂 场 景 中 分 割 边界出现欠分割现象。针对该问题,基于融合自适应加权聚合策略提出一种改进的 U-Net++网络,并将其 应 用 于 电 子 计 算 机 断 层 扫 描 影 像 肺 结 节 分 割 。 该 模 型 首 先 在 卷 积 神 经 网 络 中 提 取 出 不 同 深 度 特 征语义级别的信息,再结合权重聚合模块,自适应地学习各层特征的权重,然后将学习得到的权重加载到各个特征层上采样得到的分割图以得到最终的分割结果。在 LIDC 数据集和重庆大学附属肿瘤医院肺部 电 子 计 算 机 断 层 扫 描 数 据 集 上 进 行 了 分 割 实 验 ,所 提 方 法 的 交 叉 比 在 两 个 数 据 集 上 分 别 可 达 到80.59% 和 87.40%、骰子系数分别可达到 88.23% 和 90.83%。相比 U-Net 和 U-Net++方法,该算法有效提升了图像分割性能。本文方法能在肿瘤微小细节上实现精确分割 ,较好地解决了肺结节

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明