上传者: 42483745
|
上传时间: 2022-05-27 21:05:47
|
文件大小: 1.67MB
|
文件类型: PDF
卷 积 神 经 网 络 的 语 义 分 割 模 型 未 有 效 利 用 特 征 权 重 信 息 ,导 致 在 医 学 图 像 复 杂 场 景 中 分 割 边界出现欠分割现象。针对该问题,基于融合自适应加权聚合策略提出一种改进的 U-Net++网络,并将其 应 用 于 电 子 计 算 机 断 层 扫 描 影 像 肺 结 节 分 割 。 该 模 型 首 先 在 卷 积 神 经 网 络 中 提 取 出 不 同 深 度 特 征语义级别的信息,再结合权重聚合模块,自适应地学习各层特征的权重,然后将学习得到的权重加载到各个特征层上采样得到的分割图以得到最终的分割结果。在 LIDC 数据集和重庆大学附属肿瘤医院肺部 电 子 计 算 机 断 层 扫 描 数 据 集 上 进 行 了 分 割 实 验 ,所 提 方 法 的 交 叉 比 在 两 个 数 据 集 上 分 别 可 达 到80.59% 和 87.40%、骰子系数分别可达到 88.23% 和 90.83%。相比 U-Net 和 U-Net++方法,该算法有效提升了图像分割性能。本文方法能在肿瘤微小细节上实现精确分割 ,较好地解决了肺结节