网络文本情感分析方法主要分为两大途径,无监督情感分析方法和有监督情感分析方法[2]。在2002年PANG等学者首次采用电影评论数据建立了使用机器学习的有监督情感分类方法。他分别使用了支持向量机(SVM)、朴素贝叶斯(NB)、最大熵(ME)分类器,二情感分类特征主要采用情感词频[3]。实验表明基于机器学习的有监督分类结果准确率要高于基于传统的无监督方法。文献[4]也提出了一种结合SVM和NB分类器的新模型(NBSVM),这种新的模型在多个数据集都取得了很好的分类效果。有监督网络评论情感分类方法是基于标注训练集语料来进行评论分类的,而标注的语料具有领域依赖性,因此有监督网络评论情感分类效果的好坏与文本领域有直接的关系。在一个领域标注的训练集训练的分类器很可能在另一个领域分类效果并不好。所以,有监督情感分类方法需要在不同领域标注大量不同的训练集,才能取得比较好的分类效果。但是,在众多领域都标注大量训练集是一项十分困难的事情,需要消耗大量的人力物力,已经成为有监督情感分类的瓶颈。
2024-06-13 23:05:47 9.49MB 网络 网络 机器学习 支持向量机
1
股票市场是非线性系统,具有内部结构复杂性和外部因素多变性,在股市指数价格和成交量基础上,引入宏观经济指标共同构建模型预测指标体系,并分析各指标之间的长期均衡关系和因果关系。在贝叶斯分析的基础上,将代表网络复杂性的惩罚项引入模型误差函数中,并通过动态调整惩罚因子删减网络中对股票市场不敏感的隐层神经元,在保证模型泛化能力的同时实现网络结构精简。以上证指数为例,构建基于BP算法的结构修剪神经网络预测模型,在不同的预测指标体系下对股票市场运行规律进行学习,并对上证指数进行仿真预测。最后,通过与其他神经网络预测模型比较验证该模型的有效性。
1
毕业论文,共41页。 BP( Back Propagation) 网络是一种被广泛运用的神经网络。它的核心是BP算法,一种对于多基本子系统构成的大系统进行微商计算的严格而有效的方法,结构简单,算法成熟。与传统统计回归方法相比,神经网络不仅能够学习训练集的例子,且能从训练集中提炼出某种一般性原理、规律,具有很强 的非线性函数拟合特性, 这对于预测短周期内股指波动有较强的适用性。 本文尝试利用基于BP算法的三层向前神经网络对上海交易所上证指数进行了预测,并针对BP网络原形的一些缺点和不足,对原有的预测方法作出了一些改进。在实际预测中取得了良好的效果。
2021-06-01 14:08:07 682KB BP神经网络 股票指数预测