针对共生生物搜索算法存在易早熟、收敛速度慢等缺陷,提出一种基于子种群拉伸操作的精英共生生物搜索算法.在“互利共生”阶段,根据适应度值将种群划分为两个子种群,设计有针对性的进化策略,使两个子种群分别负责开发和探索,有效地平衡算法的收敛速度与精度;在“偏利共生”阶段,利用最优个体的方向性引导信息,引入拉伸因子和差分扰动向量,并修正个体更新模式,从而在提高算法收敛速度的同时保证种群的多样性;模拟寄生体和宿主的生物关系,提出精英“寄生”机制,进一步平衡算法在整个迭代过程中的探索与开发能力.对与标准共生生物算法、改进后的共生生物搜索算法以及其他4个群智能进化算法在17个函数上的测试结果进行比较分析,结果表明所提出的算法精度更佳,收敛速度优势明显.
1