跟踪滤波实现了功能:①平滑了测量数据,改善了对当前时刻k的状态估计,这一步可以叫“更新”。②根据当前的状态估计对下一刻k+1时刻进行状态估计,为下一次测量做准备,这一步称之为“预测”。当前雷达跟踪领域常用的滤波器有alpha-beta滤波器、alpha-beta-gamma滤波器、卡尔曼滤波器(Kalman filtering,KF)、扩展卡尔曼滤波器(Extended Kalman filter,EKF)、无迹卡尔曼滤波器(Untraced Kalman filter,UKF)和粒子滤波器(Particle filter,PF)等等其他新型滤波器。 在目标跟踪中,由于误差的存在,需要合适的滤波技术进行抑制,同时使用扩展卡尔曼滤波和无迹卡尔曼滤波,解决模型的非线性问题。进一步,将粒子滤波应用于非线性非高斯模型下,通过仿真验证了无迹卡尔曼滤波和粒子滤波具有更优良的跟踪性能。 粒子滤波部分有待改进,期待指正!
2025-09-15 19:47:26 733KB 目标跟踪
1
目标跟踪技术在计算机视觉和信号处理领域中占据着重要的地位,其中滤波算法是实现目标跟踪的核心技术之一。卡尔曼滤波(Kalman Filter, KF)、扩展卡尔曼滤波(Extended Kalman Filter, EKF)、无迹卡尔曼滤波(Unscented Kalman Filter, UKF)和粒子滤波(Particle Filter, PF)是四种常见的滤波算法,它们各有特点,适用于不同的场景和需求。 卡尔曼滤波是一种高效的递归滤波器,它能够在带噪声的线性系统中估计线性动态系统的状态。卡尔曼滤波器适用于系统模型和观测模型都是线性的情况,通过预测和更新两个阶段交替进行,实现实时的状态估计。由于其计算效率高,卡尔曼滤波在目标跟踪领域有着广泛的应用,尤其是在目标跟踪初期。 扩展卡尔曼滤波是对卡尔曼滤波的一种扩展,用于处理非线性系统的状态估计问题。在实际应用中,许多系统可以近似为非线性系统,EKF通过一阶泰勒展开将非线性函数局部线性化,然后应用标准卡尔曼滤波算法。虽然EKF在非线性系统中能够提供有效的状态估计,但其线性化的误差有时会导致滤波性能下降,尤其是在系统高度非线性时。 无迹卡尔曼滤波是另一种处理非线性系统的滤波方法。UKF采用无迹变换来捕捉非线性状态分布的统计特性,通过选择一组Sigma点来近似非线性函数的分布,避免了EKF中的线性化误差。UKF不需要计算复杂的雅可比矩阵,因此在某些情况下比EKF有着更好的性能,特别是在状态变量维数较高时。 粒子滤波又称为蒙特卡罗滤波,是一种基于贝叶斯估计的序列蒙特卡罗方法,通过一组带有权重的随机样本(粒子)来近似后验概率分布。粒子滤波特别适用于处理非线性、非高斯噪声系统的状态估计问题,理论上可以逼近任意精度的后验概率密度函数。然而,粒子滤波的计算量通常较大,尤其是在粒子数目较多时。 在实际应用中,选择哪一种滤波算法主要取决于目标跟踪系统的具体要求,包括系统模型的线性度、噪声特性、计算资源和实时性要求等因素。因此,对于卡尔曼滤波、扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波的效果对比研究,可以帮助工程师和研究人员更好地理解每种算法的优缺点,从而在实际项目中做出更加合理的选择。 Angle_Convert.m、PF.m、UKF.m、Data_Generate.m、EKF.m、Figure.m、KF.m、main.m、Parameter_Set.m和RMS.m这些文件名称暗示了文件中可能包含了实现目标跟踪算法的源代码,以及用于生成仿真数据、设置参数、计算均方根误差(RMS)等模块。这些文件对于深入研究目标跟踪算法的实现细节,以及在不同算法间进行性能对比提供了实验基础。
1
机器学习(变分贝叶斯、粒子滤波及边缘PF,内容包括大量课件、MATLAB代码)
2024-06-14 20:31:13 64.48MB matlab 变分贝叶斯 机器学习 粒子滤波
C++代码是直接调动摄像头,效率比较低,识别准确率也有待提高,有很大的优化空间。 https://blog.csdn.net/OEMT_301/article/details/103789392
2023-10-02 22:11:30 445KB 粒子滤波
1
针对基于信号接收强度指示(Received Signal Strength Indicator, RSSI)的无线传感器网络室内定位易受到复杂环境的影响、不稳定等问题,提出一种自适应的动态测距室内定位算法(self-adaptively dynamic ranging,SADR),采用节点RSSI建立动态测距模型,实时更新模型中环境参数,利用改进的代价参考粒子滤波进行测距,运用最小二乘法计算目标位置。仿真和实验结果表明,算法适应复杂环境,提高了定位精度,满足无线传感器网室内定位需求。
1
基于粒子滤波器的视频目标跟踪(哈工大博士论文)多区域联合粒子滤波器算法 +概率预测与分类结合的目标跟踪定位方法+粒子滤波器中自适应多特征融合的目标外观特征表示方法+短道速滑滑行数据测量系统
2023-05-09 22:27:03 4.79MB 粒子滤波 视频目标跟踪 自适应权值
1
目标跟踪是计算机视觉和图像处理的一个重点课题,在视频监控、机器人视觉导航以及智能交通控制中具 有广泛的应用前景。通过粒子滤波技术,研究了如何整合颜色特征、前景信息和积分图运算等技术实现视频目标跟 踪的粒子滤波算法。在对目标进行分割中采用了混合高斯背景建模方法;同时结合积分直方图的计算方法对颜色特 征进行分段统计及相互遮挡的判断,实现基于粒子滤波的目标跟踪算法的优化,解决跟踪中诸如遮挡、光照变化、背 景干扰、尺寸变化等难以解决的问题。实验结果表明提出的方法达到了预期目标。
2023-05-09 22:21:38 1.59MB 工程技术 论文
1
自调整平滑区间粒子滤波平滑算法
2023-04-13 16:54:11 544KB 研究论文
1
针对室内复杂环境下无线传感器节点的信号传播状态在LOS/NLOS之间切换的现象,提出基于TDOA和RSS的可行域粒子滤波非视距定位.首先采用基于TDOA和RSS两种测距模型的假设检验方法去辨识测量信号中是否存在NLOS现象,然后采用考虑NLOS测量信息的可行域粒子滤波方法对未知移动节点的位置进行定位.仿真结果表明,所提出的方法优于最小二乘法、普通的粒子滤波算法以及仅采用RSS测距模型的粒子滤波算法,具有较高的定位精度.
1
用MATLAB仿真实现,对单移动目标进行跟踪,主要功能:展示跟踪曲线;初速度、节点坐标等参数设置;实现算法:纯方位角的粒子滤波算法。
1