机器学习(变分贝叶斯、粒子滤波及边缘PF,内容包括大量课件、MATLAB代码)_MATLAB_变分贝叶斯_机器学习_粒子滤波

上传者: 42659252 | 上传时间: 2024-06-14 20:31:13 | 文件大小: 64.48MB | 文件类型: ZIP
机器学习(变分贝叶斯、粒子滤波及边缘PF,内容包括大量课件、MATLAB代码)

文件下载

资源详情

[{"title":"( 44 个子文件 64.48MB ) 机器学习(变分贝叶斯、粒子滤波及边缘PF,内容包括大量课件、MATLAB代码)_MATLAB_变分贝叶斯_机器学习_粒子滤波","children":[{"title":"徐亦达老师机器学习课件","children":[{"title":"ppt和代码","children":[{"title":"dynamic_model.pdf <span style='color:#111;'> 559.80KB </span>","children":null,"spread":false},{"title":"test_autocorrelation.m <span style='color:#111;'> 3.86KB </span>","children":null,"spread":false},{"title":"30_min_AI.pptx <span style='color:#111;'> 22.75MB </span>","children":null,"spread":false},{"title":"lda_gibbs_example.m <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"particle_filter.pdf <span style='color:#111;'> 299.52KB </span>","children":null,"spread":false},{"title":"selected_probability.pdf <span style='color:#111;'> 987.45KB </span>","children":null,"spread":false},{"title":"statistics.pdf <span style='color:#111;'> 157.14KB </span>","children":null,"spread":false},{"title":"cnn_beyond.pdf <span style='color:#111;'> 5.50MB </span>","children":null,"spread":false},{"title":"costFunction.m <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"chinese_restaurant_process.ipynb <span style='color:#111;'> 12.09KB </span>","children":null,"spread":false},{"title":"data_analytics.pdf <span style='color:#111;'> 228.68KB </span>","children":null,"spread":false},{"title":"non_parametrics.pdf <span style='color:#111;'> 420.21KB </span>","children":null,"spread":false},{"title":"industry_master_class.ipynb <span style='color:#111;'> 230.79KB </span>","children":null,"spread":false},{"title":"gibbs.m <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"markov_chain_monte_carlo.pdf <span style='color:#111;'> 410.32KB </span>","children":null,"spread":false},{"title":"non_parametrics_extensions.pdf <span style='color:#111;'> 203.31KB </span>","children":null,"spread":false},{"title":"optimization.pdf <span style='color:#111;'> 438.48KB </span>","children":null,"spread":false},{"title":"gmm_demo.m <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"em.pdf <span style='color:#111;'> 606.11KB </span>","children":null,"spread":false},{"title":"dirichlet_process.m <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"introduction_monte_carlo.pdf <span style='color:#111;'> 274.15KB </span>","children":null,"spread":false},{"title":"vb_normal_gamma.m <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"dimension_reduction.pdf <span style='color:#111;'> 187.22KB </span>","children":null,"spread":false},{"title":"rbm_gan.pdf <span style='color:#111;'> 295.20KB </span>","children":null,"spread":false},{"title":"AI_and_machine_learning.pdf <span style='color:#111;'> 24.87MB </span>","children":null,"spread":false},{"title":"neural_networks.pdf <span style='color:#111;'> 209.92KB </span>","children":null,"spread":false},{"title":"stochastic_matrices.pdf <span style='color:#111;'> 289.11KB </span>","children":null,"spread":false},{"title":"recommendation.pdf <span style='color:#111;'> 615.72KB </span>","children":null,"spread":false},{"title":"deeCamp.pdf <span style='color:#111;'> 1.44MB </span>","children":null,"spread":false},{"title":"variational.pdf <span style='color:#111;'> 609.09KB </span>","children":null,"spread":false},{"title":"deep_nlp.pdf <span style='color:#111;'> 2.34MB </span>","children":null,"spread":false},{"title":"regression.pdf <span style='color:#111;'> 428.57KB </span>","children":null,"spread":false},{"title":"文件内容说明.docx <span style='color:#111;'> 104.82KB </span>","children":null,"spread":false},{"title":"adaptive_rejection_sampling.m <span style='color:#111;'> 9.10KB </span>","children":null,"spread":false},{"title":"kmeans_demo.m <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"soft_max.m <span style='color:#111;'> 4.69KB </span>","children":null,"spread":false},{"title":"kalman_demo.m <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"probability.pdf <span style='color:#111;'> 303.95KB </span>","children":null,"spread":false},{"title":"dqn.pdf <span style='color:#111;'> 743.69KB </span>","children":null,"spread":false},{"title":"dpp.pdf <span style='color:#111;'> 333.50KB </span>","children":null,"spread":false},{"title":"word_vector.pdf <span style='color:#111;'> 501.78KB </span>","children":null,"spread":false},{"title":"DeeCamp2018_Xu_final.pptx <span style='color:#111;'> 3.44MB </span>","children":null,"spread":false},{"title":"bayesian.pdf <span style='color:#111;'> 189.82KB </span>","children":null,"spread":false},{"title":"hybrid_gmm.m <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明