利用麻雀算法对机械臂进行五次B样条轨迹规划的方法及其Matlab实现。首先阐述了麻雀算法的核心思想,即通过模拟麻雀群体的行为寻找最优解,重点在于初始化种群时的时间参数设置。接着讲解了五次B样条参数化的具体实现方法,强调了时间缩放系数对轨迹执行时间的影响。然后讨论了适应度函数的设计,指出需要综合考虑总时间和动力学约束的违反情况,并给出了具体的惩罚机制。此外,还提到了更换不同型号机械臂(如从UR5到ABB IRB 120)时需要注意修改DH参数和关节限制。最后展示了优化前后的性能对比,表明新方法不仅缩短了动作时间,还提高了运动的平稳性。 适合人群:对机器人学、自动化控制以及优化算法感兴趣的科研人员和技术开发者。 使用场景及目标:适用于希望提高机械臂工作效率的研究项目或工业应用,旨在通过改进轨迹规划算法使机械臂的动作更加高效和平滑。 其他说明:文中提供了完整的Matlab代码片段,便于读者理解和复现实验结果。同时提醒读者注意,在追求时间最优的同时也要兼顾能量消耗等因素,合理调整适应度函数的权重。
2026-01-05 10:37:44 715KB
1
《MWC飞控算法详解与程序解析》 MWC(MultiWii Control)飞控系统是无人机领域中的一款知名开源项目,它以其高效稳定的飞行控制算法而受到广大开发者和无人机爱好者的青睐。本文将深入探讨MWC飞控的最新算法程序,旨在帮助读者理解和运用这些算法,提升无人机设计和操控能力。 MWC飞控的核心在于其飞行控制算法,这是一组精心设计的数学模型,用于实时处理无人机的传感器数据,包括陀螺仪、加速度计、磁力计等,以实现对无人机的姿态控制、高度保持、航向锁定等功能。这些算法主要分为以下几个部分: 1. 数据融合:MWC使用卡尔曼滤波器进行传感器数据的融合,这是一种统计最优的估计方法,能有效消除噪声,提高数据的准确性和稳定性。通过结合不同传感器的数据,构建出更精确的飞行状态模型。 2. 姿态控制:MWC算法中包含了PID控制器,用于调整电机转速以实现对无人机的姿态控制。PID控制器由比例(P)、积分(I)和微分(D)三个部分组成,能够快速响应并稳定飞行姿态。 3. 高度控制:通过加速度计或气压计的数据,MWC算法可以计算并维持无人机的飞行高度。这通常采用一个独立的PID控制器来实现,确保无人机在设定的高度上平稳飞行。 4. 航向锁定:MWC利用磁力计数据和PID控制器实现航向锁定。通过对地球磁场的测量,算法可以确定无人机的相对方向,并自动修正航向偏移。 5. GPS导航:如果配备了GPS模块,MWC还能提供自主飞行功能,如航点飞行、返航等。GPS数据与飞控算法结合,使得无人机能够在预设的路径上精准飞行。 6. 自动调平:MWC算法具备自动调平功能,即使在起飞时无人机姿态不平整,也能迅速调整到水平状态。 在MultiWii_dev_20111017这个版本中,我们可以看到MWC飞控的源代码,这对于开发者来说是一份宝贵的参考资料。通过阅读和分析源码,不仅可以理解算法的工作原理,还可以根据实际需求进行定制和优化。同时,开源的特性也使得开发者能够互相交流,共同推动MWC飞控系统的进步。 MWC飞控算法是无人机技术中的重要组成部分,它的高效运行依赖于精确的数据处理和智能控制策略。通过深入学习和实践,我们可以掌握这一领域的关键技能,为无人机的创新应用打下坚实基础。无论你是无人机爱好者还是专业开发者,理解并掌握MWC飞控的算法细节都将对你的事业产生积极影响。
2026-01-04 23:13:16 4.81MB
1
在现代控制系统设计中,Simulink作为MATLAB的一个强大模块,被广泛用于系统建模、仿真和分析。本文将深入探讨如何在传递函数中引入变量进行实时更新算法,并基于Simulink进行仿真,同时提供了一个名为"main.slx"的仿真模型作为参考。另外,我们还会看到一个名为"system1.m"的MATLAB脚本文件,它可能包含了建立传递函数模型和定义动态更新逻辑的代码。 传递函数是控制系统理论中的基础概念,它描述了系统的输入与输出之间的关系。传递函数通常表示为G(s) = Y(s)/U(s),其中Y(s)是系统输出的拉普拉斯变换,U(s)是系统输入的拉普拉斯变换,s是复频域变量。当系统参数或外部条件发生变化时,传统的固定传递函数可能无法准确反映系统的动态特性,因此需要引入变量实时更新算法。 在Simulink环境中,我们可以创建一个传递函数模块,通过设置传递函数的分子和分母多项式系数来构建模型。然后,利用MATLAB脚本(如"system1.m")或Simulink中的子系统,我们可以定义一个动态更新机制,使得传递函数的系数可以根据实际运行条件的变化而实时调整。这通常涉及到数据采集、信号处理和控制逻辑的实现。 具体步骤如下: 1. 创建传递函数模块:在Simulink库浏览器中找到“S-Function”或者“Transfer Fcn”模块,将其拖入模型窗口,设置初始传递函数的系数。 2. 实时数据获取:使用MATLAB的“From Workspace”或“From File”模块读取实时数据,这些数据可以是系统状态、传感器测量值等。 3. 更新逻辑:在MATLAB脚本或Simulink的“Subsystem”中编写逻辑,根据实时数据更新传递函数的系数。 4. 信号处理:使用Simulink的信号处理模块(如乘法器、加法器等)根据新的系数调整传递函数。 5. 仿真运行:启动Simulink仿真,观察并分析系统输出,验证实时更新算法的效果。 "main.slx"模型可能是这样的一个实现,通过运行"system1.m"脚本来初始化和更新传递函数。用户可以通过打开模型,查看其中的连接和模块配置,以理解如何将变量实时更新算法应用于传递函数。这不仅有助于理解系统动态响应,还可以为控制系统的设计和优化提供依据。 总结来说,这个话题展示了如何在Simulink环境中利用变量实时更新算法改进传递函数模型,以适应动态变化的系统环境。通过深入研究"system1.m"和"main.slx",我们可以学习到如何结合MATLAB脚本和Simulink实现这一功能,从而提升控制系统的适应性和鲁棒性。
2026-01-04 16:32:55 17KB matlab simulink 传递函数
1
内容概要:SM7算法由中国国家密码管理局于2012年公布,是国产密码算法系列之一,旨在提供高安全性、低计算复杂度的数据加密服务。它遵循GB/T 33928-2017标准,采用128位分组长度和密钥长度,经过11轮加密/解密。核心结构基于线性反馈移位寄存器和仿射变换,包括初始轮密钥扩展、字节代换、行移位、列混淆和轮密钥加等步骤。S-Box表用于非线性替换,基于有限域GF(2^8)的仿射变换,增强了抗差分分析能力。SM7具有良好的抗攻击性和轻量化特点,适用于物联网通信、移动支付和身份认证等场景。; 适合人群:从事信息安全、密码学研究或开发的人员,特别是关注国产密码算法的研究者和技术开发者。; 使用场景及目标:①物联网通信中设备间数据加密;②移动支付交易信息的机密性与完整性保护;③用户身份凭证的安全存储与传输。; 阅读建议:读者应重点关注SM7算法的设计目标、核心结构及其安全特性,了解其相对于其他算法的优势,特别是在资源受限环境下的应用。同时,建议参考提供的优化建议,以更好地理解和实现该算法
1
分布式自适应滤波器仿真:D-LMS算法,附带注释及ATC与CTA版本Matlab代码.pdf
2026-01-04 14:45:59 51KB
1
分布式自适应滤波器D-LMS算法的MATLAB实现,重点解析了ATC(先组合后更新)和CTA(先更新后组合)两种经典结构。文中首先设定了网络结构,接着生成了带有噪声的仿真数据,然后分别实现了这两种结构的具体算法,并通过误差曲线展示了它们的性能差异。ATC结构收敛速度快但对通信延迟敏感,而CTA结构稳定性更高,但在相同条件下收敛速度较慢。 适合人群:从事分布式信号处理研究的技术人员,尤其是对自适应滤波器感兴趣的科研工作者和研究生。 使用场景及目标:适用于需要在多节点协作环境中进行参数估计的项目,如无线传感网络、物联网等。目标是帮助读者理解D-LMS算法的工作原理,并能够在实际应用中选择合适的结构。 其他说明:文中提供的MATLAB代码注释详尽,便于理解和修改。建议读者在实践中调整参数,观察不同设置下算法的表现,从而深入掌握D-LMS算法的特点。
2026-01-04 14:45:10 160KB
1
除了个别算法之外,演示系统给出了《数据结构》(C语言版)书中算法对应的程序代码(CPP文件)和测试运行程序(VC++6.0的EXE文件)。通过本系统,可以显示算法的源代码以及运行结果。具体操作步骤如下: 1.选择相应章 单击演示系统界面右侧章选择按钮。 例如,要选择第6章,则单击“第6章”选择按钮。 当相应章被选择后,窗口的右侧部分将列出本章的算法选择按钮。 例如,选择第6章后,窗口的右侧部分将显示第6章中的算法6.1-6.13和6.15的选择按钮。由于书中的算法6.14和6.16只是示意性算法,故未给出源码,其按钮上的文字为灰色,处于“无效”状态。 2.选择相应章中的算法 单击窗口右侧部分所列举的本章某个算法选择按钮,被选择的算法的源码将在窗口左侧空白区域中显示。对于较长的源码,单击显示区域后,可用键盘的光标键和翻页键浏览源码。 3.运行测试程序 单击窗口上部的“运行”按钮,将弹出运行窗口,运行所选算法的测试程序。若运行按钮为灰色,表示该算法无单独测试程序。 测试运行说明: 测试运行窗口显示程序的执行过程及结果。若在显示过程中出现运行窗口无法正常演示的情况,只需调节运行窗口大小即可正常显示
2026-01-04 14:21:35 2.94MB 数据结构 源码 演示系统
1
内容概要:本文详细介绍了分布式自适应滤波器D-LMS算法的MATLAB实现及其两种经典结构——ATC(先组合后更新)和CTA(先更新后组合)。首先设定了网络结构和仿真数据,接着分别展示了这两种结构的具体实现步骤,包括权重更新和误差计算。文中通过对比两者的误差曲线,指出ATC结构收敛速度快但对通信延迟敏感,而CTA结构稳定性更好,适用于噪声较大或通信条件不佳的情况。此外,还提供了关于步长、滤波器阶数以及节点数较多时的实用技巧。 适合人群:具有一定MATLAB编程基础和技术背景的研究人员、工程师,特别是从事分布式信号处理、无线传感网等领域工作的专业人士。 使用场景及目标:①研究分布式自适应滤波器的工作机制;②评估ATC和CTA两种结构在不同应用场景下的表现;③为实际工程项目提供理论依据和技术支持。 其他说明:文中提供的代码可以直接用于实验验证,并可根据具体需求进行适当调整。同时提醒读者关注步长的选择范围和其他参数配置,以确保算法稳定性和有效性。
2026-01-04 10:43:28 231KB
1
一种基于深度强化学习 (DRL) 的面向 QoE 的计算卸载算法 资源内项目源码是均来自个人的课程设计、毕业设计或者具体项目,代码都测试ok,都是运行成功后才上传资源,答辩评审绝对信服的,拿来就能用。放心下载使用!源码、说明、论文、数据集一站式服务,拿来就能用的绝对好资源!!! 项目备注 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载学习,也适合小白学习进阶,当然也可作为毕设项目、课程设计、大作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可用于毕设、课设、作业等。 下载后请首先打开README.md文件(如有),仅供学习参考, 切勿用于商业用途。 4、如有侵权请私信博主,感谢支持
2026-01-02 21:17:09 9.83MB 深度学习
1
蚁群算法是一种智能优化算法,在TSP商旅问题上得到广泛使用。蚁群算法于1992年由Marco Dorigo首次提出,该算法来源于蚂蚁觅食行为。 (1)数据准备 为了防止既有变量的干扰,首先将环境变量清空。然后将城市的位置坐标从数据文件(详见源程序里的excel文件)读入程序,并保存到变量为citys的矩阵中(第一列为城市的横坐标,第二列为城市的纵坐标)。 (2)计算城市距离矩阵 根据平面几何中两点间距离公式及城市坐标矩阵citys,可以很容易计算出任意两城市之间的距离。但需要注意的是,这样计算出的矩阵对角线上的元素为0,然而为保证启发函数的分母不为0,需将对角线上的元素修正为一个足够小的正数。从数据的数量级判断,修正为以下,我们认为就足够了。 (3)初始化参数 计算之前需要对参数进行初始化,同时为了加快程序的执行速度,对于程序中涉及的一些过程量,需要预分配其存储容量。 (4)迭代寻找最佳路径 该步为整个算法的核心。首先要根据蚂蚁的转移概率构建解空间,即逐个蚂蚁逐个城市访问,直至遍历所有城市。然后计算各个蚂蚁经过路径的长度,并在每次迭代后根据信息素更新公式实时更新各个城市连接路径上的信息
2026-01-02 21:10:01 640KB matlab
1