cognos 入门 主要讲述了从OS中的report studio 部分的常用操作 和基本报表配法
2025-11-23 16:05:49 4.24MB report
1
编码器及其应用概述   编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。 编码器把角位移或直线位移转换成电信号,前者成为码盘,后者称码尺。按照读出方式编码器可以分为接触式和非接触式两种。接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是"1"还是"0";非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1"还是"0",通过"1"和"0"的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。   旋转编码器是用来测量转速的装置,光电式旋转编码器通过光电转换 正交编码器是一种精密的电子设备,用于准确测量物体的位移、角度和速度,尤其在工业自动化领域中广泛应用。编码器将机械运动转化为电信号,以便计算机或其他控制系统能够理解和处理这些信息。根据读取方式,编码器可以分为接触式和非接触式,其中接触式编码器使用电刷接触导电区或绝缘区来表示二进制数据,而非接触式编码器则通过光敏或磁敏元件检测透光区和不透光区,将物理信号转换为电信号。 旋转编码器主要用于测量旋转速度,其中光电式旋转编码器是常见的一种类型。它利用光电转换原理,将输出轴的角位移转换为电脉冲。单路输出编码器只提供一组脉冲,而双路输出编码器则有A和B两组相位差90度的脉冲,通过这两组脉冲不仅可以计算转速,还能判断旋转方向。如果存在第三个通道,如Z轴或索引信号,那么每旋转一周会发出一个脉冲,用于确定一个参考位置。 正交编码器的输出信号A和B是相互垂直的,因此可以提供位置和方向信息。当A相位超前于B时,表示顺时针旋转;相反,B超前则表示逆时针旋转。这种设计使得正交编码器在运动控制中尤为有效,能够实现精确的定位和运动方向监测。 除了增量式编码器,还有绝对式编码器,它可以提供目标的绝对位置信息,而不是相对于起始位置的相对变化。绝对式编码器的码盘上有多个同心码道,每个码道代表不同的位移值,码道数量越多,分辨率越高。例如,如果码盘有16层码道,最外层可以有65536个扇区,从而提供极高的位置精度。 在实际应用中,编码器的性能受到环境因素的影响,如温度、湿度、杂散磁场和电磁干扰。为了提高信号的抗干扰能力,差分编码器被广泛使用,其信号线A'和B'与对应的A和B形成推挽结构,即使在噪声较大的环境中也能保证信号的准确性。 正确进行正交编码器测量涉及对编码器类型的理解、信号处理、环境条件的考虑以及误差补偿等方面。选择合适的编码器类型、正确配置和使用,以及采取必要的抗干扰措施,都是确保测量精度的关键步骤。在实际操作中,还需要结合具体的系统需求和技术规格来选择和集成编码器,以实现高效可靠的测量和控制。
2025-11-20 10:25:20 274KB
1
修复Unity2019之后透明度点击失效bug
2025-10-29 21:52:39 5KB image 点击事件
1
AUTOSAR在汽车电子领域被广泛的应用,在实际的开发过程中(本人做过应用层开发),自己对AUTOSAR也有了浅显的理解,并结合了具体项目,做成了PPT,作为经验分享,其中存在个人片面的理解,毕竟AUTOSAR是一个很庞大的架构体系,只是涉及了皮毛,如有不正确的地方,望见谅。
2025-10-28 11:00:59 5.89MB AUTOSAR 实际开发 简单介绍
1
**PIC硬件死锁问题概述** 在使用PIC单片机进行工控电路设计时,一个常见的难题就是硬件死锁现象。PIC单片机在受到干扰后容易出现这种问题,导致系统无法正常工作,甚至硬件复位也无法恢复。通常,业界普遍认为这种死锁是由于“CMOS的可控硅效应”造成的,即CMOS器件在特定条件下形成自维持的导通状态,进而引发系统停滞。然而,对于这种解释,存在争议,一些工程师并不完全认同。 **死锁现象的分析** 尽管“CMOS的可控硅效应”被广泛提及,但作者提出了不同的观点。他认为死锁并非由CMOS的可控硅效应直接导致,而是由于PIC单片机的MCLR(Master Clear)引脚在重置或受到干扰时,可能会产生振荡信号。这个振荡信号使得与/MCLR相连的电容持续振荡,进而导致PIC芯片内部VDD(电源电压)和VSS(接地)之间产生过大的电流,类似于短路,从而使得CPU发热并陷入死锁状态。移除电容后,CPU能够恢复正常工作,电流消耗也回到正常水平。 **死锁解决方案** 作者在寻找死锁原因的过程中,通过实验找到了一种可能的解决方法。他建议在/MCLR引脚上增加一个提升电阻到V+,连接一个0.1μF电容到地,并且通过一个按键开关接到地。通过反复操作按键,观察到死锁现象的重复发生,从而确认了/MCLR引脚的问题。这一发现被反馈给了Microchip公司,但是否在后续的芯片设计中进行了改进,文中并未明确说明。 **实际应用中的挑战** 在汽车防盗器的设计案例中,作者使用了一个简单的PIC16C55设计,替代了原有的复杂逻辑电路。尽管简化了电路,提高了效率,但出现了死锁问题,影响了系统的稳定性和可靠性。经过深入研究,作者找到了问题所在并提出了解决方案,证明了即使面对硬件死锁这类棘手问题,通过仔细分析和实验也能找到解决之道。 **总结** PIC硬件死锁问题一直是开发者面临的困扰,传统的解释可能并不全面。理解死锁的根本原因有助于我们更好地设计和优化基于PIC单片机的系统。通过深入研究,作者揭示了/MCLR引脚的潜在问题,这为解决死锁提供了新的视角。在实际应用中,开发者应注重对硬件的抗干扰设计,以确保系统在各种环境下的稳定运行。同时,及时跟踪和了解芯片制造商的技术更新,以便利用最新的改进来避免或解决可能出现的问题。
2025-07-30 18:50:50 83KB 硬件死锁 PIC单片机
1
频率响应是电子电路,尤其是模拟电路中的一个关键概念,它描述了电路对不同频率输入信号的响应能力。本文将简要探讨频率响应的一般概念,包括其表示方法、下限频率、上限频率、通频带以及频率失真。 频率响应可以通过幅频特性和相频特性来表示。幅频特性描述了电路对不同频率信号的放大倍数,而相频特性则反映了信号通过电路后相位的变化。以典型的单管共射放大电路为例,低频段,由于耦合电容的容抗增大,导致输入电压减小,放大倍数下降;而在高频段,由于三极管极间电容的容抗减小,使得被放大的电流减小,同样造成放大倍数下降。相频特性则显示了不同频率信号通过电路时的附加相位变化,低频段会有超前相移,高频段会有滞后相移。 下限频率(fL)、上限频率(fH)和通频带(BW)是衡量电路频率响应的重要参数。下限频率是电路开始显著衰减输入信号频率的点,上限频率则是电路停止有效放大的频率。通频带是这两个频率之差,它表示电路可以无明显失真地处理的频率范围。通频带越大,电路对于不同频率信号的适应性就越强,是衡量放大电路性能的重要指标。 再者,频率失真是由于通频带的限制而产生的现象,主要包括幅频失真和相频失真。幅频失真指的是电路对不同频率的输入信号放大倍数不一致,导致输出信号的幅度比例发生变化。相频失真则是由于电路对不同频率信号的相移不同,使得输出信号的相位关系发生改变。举例来说,如果输入信号包含多个频率成分,如f1和f2,如果电路对这两个频率的放大倍数或相位处理不同,那么输出信号就会出现失真,表现为幅度的不均匀或相位的不匹配。 频率响应是电子系统设计和分析的核心概念,它关乎到电路能否有效地处理各种频率的信号。理解频率响应的表示方法、关键参数以及失真类型,对于优化电路设计、减少信号失真以及提高系统的整体性能至关重要。在模拟电路设计中,掌握这些基本概念可以帮助工程师更好地预测和控制电路的行为,以满足特定的应用需求。
2025-06-19 09:50:59 109KB 频率响应 模拟电路
1
一款3~12V可调分立元件直流稳压电源的工作原理涉及到电子电路中的基本概念,包括交流到直流的转换、电压稳定以及反馈控制。电源从220V交流电网获取输入,通过降压变压器B降低电压至12V左右的交流电。这个降压过程是为了确保后续电路的安全和效率。 接下来,经过VD1~VD4组成的桥式整流电路,将交流电转换为脉动直流电。这个过程中,整流二极管在正半周期导通,负半周期截止,使得电流仅在一个方向流动。然后,C1电容起到了滤波的作用,它将脉动直流中的交流成分滤除,使电压趋于平滑,得到大约16V的直流电压,但这个电压仍然是不稳定的。 为了实现电压的稳定,电路采用了晶体三极管VT1和VT2作为复合调整管,以及VT3作为比较放大器。R3和可调电阻RP不仅限制了LED的电流,还与LED一起构成了取样和基准电压电路。16V的直流电压Ui被施加在调整管VT1和VT2的输入端,R1提供基极偏置,使得VT1能够导通并输出电压Uo。 Uo通过取样电路连接到VT3的基极,这里VT3作为一个比较放大器,它的功能是将输出电压Uo与一个固定的基准电压进行比较。如果输出电压Uo高于设定值,VT3的集电极将输出一个误差信号,控制VT1的导通程度,从而使Uo保持在一个预设的范围内,实现了电压的稳定。 在这个设计中,LED的正向导通电压(通常在1.8V到2V之间)被巧妙地用作基准电压的一部分,这样既能提供稳定的参考电压,又可以作为电源的指示灯。电容C2则用于在为收音机供电时抑制可能存在的调制交流噪声。如果需要更大的电流输出,例如负载电流达到或超过300mA,VT1可能需要替换为中功率管如C2073,并添加散热片。同时,电解电容器应选择25V的额定工作电压以应对电压波动。 这款3~12V可调分立元件直流稳压电源的工作原理依赖于电压的整流、滤波、比较放大和反馈控制,通过这些步骤,电源能提供一个稳定的输出电压,适应不同负载需求,并在电路中实现电压调节。在实际应用中,根据负载电流和输出要求,选择合适的元件并考虑散热问题,可以确保电源的稳定和可靠。
1
红外测温仪的测温原理是将物体(如钢水)发射的红外线具有的辐射能转变成电信号,红外线辐射能的大小与物体(如钢水)本身的温度相对应,根据转变成电信号大小,可以确定物体(如钢水)的温度。红外测温技术已发展到可对有热变化表面进行扫描测温,确定其温度分布图像,迅速检测出隐藏的温差, 这就是红外热像仪。红外热像仪最先应用于军事上,美国TI公司19"年研制出世界上第一台红外扫描侦察系统。以后,红外热成像技术在西方国家陆续用于飞机、坦克、军舰和其他武器上,作为侦察目标的热瞄系统,大大提高了搜索、命中目标的能力。瑞典AGA公司生产的红外热像仪在民用技术上处于领先地位。但是,怎样使红外测温技术得到广泛应用,目前仍
2024-09-15 21:02:15 103KB 电子测量
1
述半导体测试的术语 1. DUT   需要被实施测试的半导体器件通常叫做DUT(Device Under Test,我们常简称“被测器件”),或者叫UUT(Unit Under Test)。   首先我们来看看关于器件引脚的常识,数字电路期间的引脚分为“信号”、“电源”和“地”三部分。   信号脚,包括输入、输出、三态和双向四类,   输入:在外部信号和器件内部逻辑之间起缓冲作用的信号输入通道;输入管脚感应其上的电压并将它转化为内部逻辑识别的“0”和“1”电平。   输出:在芯片内部逻辑和外部环境之间起缓冲作用的信号输出通道;输出管脚提供正确的逻辑“0”或“1”的电压,并提供合适的
2024-07-02 09:28:41 106KB
1
华南理工大学2024年工程伦理简述题答案,根据一些往年卷和网上资料共同整理所得 1.简述伦理与道德的区别。 2.简述技术工具论与技术自主论之间的差异。 3.当工程师在知道公司产品存在质量问题并有可能对公众的生命财产产生危害时,在职业伦理责任和社会伦理责任之间如何进行合理的权衡? 4.简述在工程实践中,工程师如何平衡经济利益和社会责任? 5.简述工程风险的伦理评估的四项基本原则。 6.简述工程中利益冲突的特点。 7.简述工程师在工程项目中如何平衡技术创新与公众安全之间的关系。 8.简述工程风险伦理评估的基本程序。 9.简述在工程实践中,工程师应如何确保项目的可持续性。 10.简述工程师应当如何应对职业行为中的伦理冲突? 11.简述工程师在职业活动中如何达到权利与责任的平衡。 12.简述在工程设计和实施中,工程师应如何考虑和应对潜在的安全风险?
2024-06-26 16:12:24 182KB 华南理工大学 工程伦理
1