循环卷积神经网络在视频联合降噪和去马赛克中的应用 循环卷积神经网络(Recurrent Convolutional Neural Networks, RCNNs)是一种深度学习模型,它结合了卷积神经网络(CNNs)的强大特征提取能力与循环神经网络(RNNs)的时间序列建模能力。在视频处理领域,RCNNs被用来处理连续帧之间的相关性,有效地利用时间信息进行任务执行,如视频降噪和去马赛克。 视频降噪是去除由于传感器噪声、光照变化等因素引起的图像不清晰的过程,而去马赛克则是恢复由单色传感器捕获的色彩信息。传统上,这两个步骤通常是分开进行的。先进行去马赛克,但这样做会产生相关噪声。研究[28]表明,适应这种相关噪声的去噪器可以得到优于先去噪后去马赛克的效果。理想的解决方案是将这两个步骤整合到一个联合降噪和去马赛克模块中,这不仅可以提高结果质量,还能简化相机流水线,合并两个深度相关的模块。 尽管已经提出了许多联合降噪和去马赛克的方法,包括基于模型的传统方法和数据驱动的现代方法,大多数研究集中在单张图像或连拍(burst)图像上。连拍图像处理考虑了多帧输入,利用帧间的相似性来增强信息。例如,有些工作利用手持设备的运动来实现超分辨率sRGB图像[14, 60]。学习基方法,如监督学习[35, 19, 20, 21]和自我监督学习[11],也在连拍联合降噪和去马赛克(Joint Denoising and Demosaicking, JDD)中取得了进展。 然而,针对视频的JDD研究相对较少。早期的视频去马赛克假设原始数据无噪声,或者采用基于补丁的方法分别处理降噪和去马赛克[66, 5]。[9]提出了一种方法,首先应用图像去马赛克算法于有噪声的原始帧,然后通过自我监督的视频降噪网络进行降噪。最近,神经场方法[47, 41]也开始被用来解决这个问题。另一个相关问题是原始连拍图像的超分辨率,其目标是获取超分辨率的sRGB图像[60, 3, 36, 2]。 视频降噪和去马赛克的关键在于时间信息的聚合,当有多帧输入时,可以通过相邻帧观察当前帧的缺失值。这种方法已被证明对于两者都有益。因此,循环卷积神经网络特别适合这样的任务,因为它能够捕捉并利用帧间的时序依赖性,同时通过卷积层处理空间信息。RCNNs在视频JDD中的应用有望实现更高效、更高质量的视频处理,同时降低计算复杂度,提高实时性能。
2025-08-15 15:44:41 14.14MB 神经网络设计
1
神经网络设计 Martin T.Hagan (美)Howard B.Demuth Mark H.Beale 此书介绍了神经网络的基本结构和学习规划,重点是对这些神经网络的数学分析、训练方法和神经网络在模式识别、信号处理以及控制系统等工程实践问题中的应用。并带有matlab代码实现及讲解。 1.绪论 2.神经网络结构 3.说明性实例 4.感知学习规划 5.信号和权值向量空间 6.神经网络中的线性变换 7.有监督的Hebb学习 8.性能曲面 9.性能优化 10.Widrow-Hoff学习算法 11.反向传播 12.反向传播的变形 13.联想学习 14.竞争网络 15.Grossberg网络 16.自适应谐振理论 17.稳定性 18.Hopfiled网络
2025-08-07 15:50:06 17.03MB 神经网络 Hagan matlab 人工智能
1
本文探讨了基于现场可编程门阵列(FPGA)的卷积神经网络(CNN)设计与实现。在计算机视觉应用中,CNN已经取得了巨大的成功,这部分归因于其固有的并行架构。文章分析了CNN的这种并行性,并基于这种特性,提出了一个并行的CNN前向传播架构。通过实验验证,在操作频率为110MHz的情况下,该架构使得FPGA的峰值运算速度可以达到0.48 GOP/s(Giga Operations Per Second),与ARM Mali-T628 GPU平台相比,其速度能达到23.5倍。 为实现该架构,研究者们需要对CNN的各个组成部分有深入理解,包括卷积层、激活函数(如ReLU)、池化层、全连接层等。CNN由许多层组成,其中卷积层用于特征提取,激活函数为非线性转换层,池化层用于降低特征维度以及防止过拟合,全连接层则用于分类决策。文章中提及的AlexNet网络是深度CNN的一个实例,它在2012年ImageNet大规模视觉识别挑战赛中获得冠军,并大大推动了CNN在深度学习领域的应用。 文中还提到,FPGA作为可编程的硬件加速器,在并行计算方面表现出色。FPGA的可编程性允许设计者为特定的算法优化硬件,从而在特定任务上实现高性能。这种灵活性使得FPGA特别适合于实现并行的CNN前向传播。FPGA能够达到的高运算速度与高效的资源利用率使其成为加速深度学习任务的有力候选者。 在具体实现CNN时,FPGA需要映射到大量的处理单元(PE,Processing Element)。这些PE负责执行CNN中的计算任务,例如矩阵乘法、卷积运算等。文中提到了不同类型的PE和它们在不同尺寸的卷积核上的应用。这些处理元素的高效使用与优化是实现高效CNN的关键。 对于FPGA的使用,研究人员还面临挑战,包括如何有效地映射CNN模型到FPGA硬件资源上,以及如何优化数据流和计算流程以最小化处理时间和功耗。这些问题的解决需要对FPGA的内部结构及其与CNN操作之间的关系有深入理解。 文中提到的实验结果显示,在相同的操作频率下,FPGA实现的CNN架构达到了比ARM Mali-T628 GPU平台高23.5倍的计算速度。这说明,尽管GPU在处理并行任务方面也有很好的性能,但在某些应用中,针对特定算法优化的FPGA解决方案在速度上具有明显优势。 文章中也提到了一些关键技术参数,如CNN的参数数量、存储需求等,这对于评估FPGA实现的成本效益至关重要。例如,CNN模型AlexNet的参数量为6100万,其中前三个卷积层的参数数量分别为27万(C1层)、170万(C2层)和120万(C3层)。这些参数直接关联到FPGA上实现时需要的存储器资源以及带宽需求。 总结来说,本文通过设计和实现基于FPGA的CNN,展示了FPGA在深度学习应用中的巨大潜力,特别是在对实时性和能效有极高要求的场景下。通过充分挖掘CNN并行架构的特性以及FPGA的可编程优势,研究人员可以在某些应用中获得比传统GPU更快的加速效果。随着FPGA技术的不断进步和CNN应用领域的不断拓展,基于FPGA的CNN实现将继续成为研究热点,推动着人工智能技术的发展。
2025-06-20 16:21:20 597KB 研究论文
1
Martin T. Hagan神经网络设计 原书第二版 课后习题答案
2024-01-06 12:19:34 11.81MB 神经网络
1
自组织多项式神经网络设计,英文论文
2022-11-24 09:23:43 643KB GMDH 自组织 神经网络
1
神经网络设计第二版答案部分
1
神经网络设计(第2版)hagan 习题参考答案(部分,重要的题基本都有).zip
资源包含文件:设计报告word+源码+演示PPT 对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络;在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于计算机视觉、自然语言处理等领域。 详细介绍参考:https://blog.csdn.net/newlw/article/details/125167714
2022-08-10 11:19:43 5.95MB C语言 MATLAB 卷积神经网络 课程设计
深层神经网络拥有更强特征表达能力的同时, 也带来了优化难、训练成本高及梯度弥散等问题; 参数数量的激增则导致模型过于臃肿, 不利于其在移动端及工业控制设备等算力弱、存储小的平台上的部署. 针对这些问题, 构建了一种融合空洞卷积和多尺度稀疏结构的轻量神经网络对图像进行特征提取, 实现对带有彩色图形噪声且字符扭曲粘连严重的验证码图像的端到端识别. 将包含100万张验证码图像的数据集按98:1:1的比例划分为训练集、验证集和测试集, 逐批参与训练. 实验结果表明, 该网络在大大减少参数数量的同时, 具有测试集上98.9%的识别成功率.
1
基于MATLAB的BP人工神经网络设计.pdf
2022-07-10 18:00:40 97KB 计算机