《基于SMIC18mmrf工艺的8位40M采样频率异步SAR ADC设计全解:原理、仿真与实现》,全新8位40M采样频率异步SAR ADC设计案例:含核心电路原理图与版图,通过全面验证的仿真文档与详细设计说明,已经完成的流片项目8bit 40M采样频率 异步SAR ADC设计 包括核心电路的原理图和版图(DRC LVS ANT都过了)有测试电路和后仿文件 带详细设计仿真文档 smic18mmrf工艺,有工艺库,有电路工程文件,提供仿真状态,可以直接导入自己的cadence运行仿真 前仿有效位数ENOB=7.84(电路里新的ADE可以到7.94) 后仿ENOB7.377,适合入门SAR ADC 顶层电路包括: 栅压自举开关Bootstrap Vcm_Based开关时序 上级板采样差分CDAC阵列 两级动态比较器 比较器高速异步时钟 动态sar逻辑 8位DFF输出 8位理想DAC。 带详细说明,告诉你各个模块怎么设计,原理是什么,有哪些注意事项,怎么仿真,包看包会。 包括详细仿真文档,原理介绍,完整电路图,仿真参数已设好,可直接使用,在自己的电脑上就可以运行仿真。 ,关键词提取结
2025-10-21 17:22:44 4.06MB sass
1
内容概要:本文围绕带隙基准电压源的电路设计与版图实现展开,详细介绍了工程文件构成(包括电路图、DRC/LVS/PEX验证及后仿真)、核心电路模块(如折叠运放钳位、启动电路、Power Down电路)的设计原理,并给出了在SM IC CMOS工艺下采用电压模式BG结构的具体参数:ppm为6.5(后仿真6.6),VDD为3.3V,PSRR达-45dB。配套提供Cadence 618支持的工程文件包及视频讲解,便于工程实践与学习。 适合人群:具备模拟集成电路基础,从事IC设计、版图实现或电路仿真的工程师,以及高校微电子相关专业研究生。 使用场景及目标:①掌握带隙基准电压源从电路设计到版图验证的全流程;②学习DRC/LVS/PEX一致性检查与后仿真方法;③在实际项目中复用工程文件结构,提升设计效率与可靠性。 阅读建议:建议结合提供的工程文件与视频讲解同步操作,重点理解启动电路与钳位结构的设计逻辑,并在Cadence环境中实践仿真流程以加深理解。
2025-09-24 17:08:05 2.69MB Cadence仿真
1
1、版图流程 通常一个正向的版图流程是:拿到一个设计完成的线路后,开始总体版图的布局,然后根据布局,开始lay模块。当完成所有模块后拼接总体版图,并通过版图验证以及后端仿真。最后完成版图输出。 2、总体版图布局 其实不同类型的电路有不同的版图布局。大都应该具备这样的原则:基准电路应该远离发热源,并且应该在芯片的中心处。噪声大的模块远离基准和易受干扰的模块。合理的布局模块,使他们之间的走线尽量的短,有数字模块的可以考虑把数字模块摆放在发热模块和敏感模块之间。一些对称电路的版图布局应该同样具有对称性。
2025-09-08 08:39:05 1.98MB CMOS版图设计
1
内容概要:本文详细介绍了Lumerical FDTD Mode建模、Device Heat仿真、Ledit与GDS版图代画、Matlab应用、Euler弯曲和椭圆弯曲结构、数字超材料及其优化算法在光子学和微电子学领域的应用。首先,Lumerical FDTD Mode作为一种电磁波模拟技术,能够模拟光子在微纳结构中的传播行为,为设计新型光子器件提供理论支持。其次,Device Heat仿真是解决电子设备散热问题的重要手段,有助于优化散热设计。接着,Ledit作为一款EDA工具,可用于绘制和编辑集成电路版图,并能生成符合要求的GDS版图。Matlab则在数据分析和处理方面发挥了关键作用。此外,文中还探讨了Euler弯曲、椭圆弯曲等弯曲结构对光子传输的影响,以及数字超材料的优化设计方法。最后,文章讲述了特殊图案的GDS模型导出流程,确保其精度和可靠性。 适合人群:从事光子学、微电子学及相关领域的研究人员和技术人员,尤其是对建模、仿真和优化感兴趣的从业者。 使用场景及目标:适用于希望深入了解Lumerical FDTD Mode建模、Device Heat仿真、Ledit与GDS版图代画、Matlab应用、弯曲结构设计及数字超材料优化的研究人员和技术人员。目标是掌握这些关键技术,提高设计和优化能力,推动相关领域的创新发展。 其他说明:本文不仅提供了详细的理论介绍,还结合实际案例进行了深入浅出的讲解,使读者能够在实践中更好地理解和应用所学知识。
2025-09-07 22:03:56 654KB Lumerical FDTD Mode
1
(五)绘制电路版图 仿真完成后要根据结果用Protel软件绘制电路版图,绘制版图时要注意以下几点 偏置电路的设计和电源滤波电路的设计。 所用电路板是普通的双层板,上层用来绘制电路,下层整个作为接地。 根据版图的大小尺寸要求调整功分器两边50欧姆阻抗线的长度,便于安装在测试架上 在绘制版图时受加工精度的限制,尺寸精度到0.01 mm即可,线宽要大于0.2mm。 各个接地点要就近接地。 由于制板时实际线宽往往要比设计线宽小0.01mm左右,在绘制版图时要考虑这个问题。
2025-08-01 22:26:24 742KB 低噪声放大器
1
两MOS管源端相同时中心对称实例 7)差分的匹配版图(一)
2025-08-01 09:55:14 11.15MB IC版图 集成电路设计】
1
基于Bandgap带隙基准的电路设计与仿真:独立测试环境适合新手,包括稳定性与噪声性能分析,Bandgap 带隙基准,基准电压,参考电压带启动电路,无版图,适合新手 每个testbench都有单独的仿真状态,直接安装就可以跑了 温度特性曲线 电源抑制比psr仿真 稳定性仿真,整个环路的增益和相位怎么仿真 噪声仿真,要大概知道噪声的主要贡献来源 ,Bandgap带隙; 基准电压/参考电压; 启动电路; 无版图; 测试bench; 仿真状态; 电源抑制比(PSR); 稳定性仿真; 环路增益; 环路相位; 噪声仿真; 主要噪声来源。,新手友好型带隙基准:多模块仿真状态下稳定与噪声仿真的探究
2025-07-16 16:08:43 1.06MB
1
基于Cadence的两级运算放大器设计,TSMC18工艺,增益87dB,单位增益带宽积达30MHz的仿真及版图验证,基于Cadence的两级运算放大器设计,工艺TSMC18,增益、带宽积与压摆率卓越,原理图仿真状态良好,版图通过DRC与LVS验证,两级运算放大器设计 cadence 电路设计 工艺tsmc18 低频增益87dB 相位裕度80 单位增益带宽积GBW 30MHz 压摆率 116V us 原理图带仿真状态 有版图过DRC lvs ,两级运算放大器设计; cadence电路设计; tsmc18工艺; 低频增益; 相位裕度; GBW; 压摆率; 原理图仿真; 版图DRC; lvs。,基于TSMC18工艺的两级运算放大器设计:高GBW与低相位噪声
2025-06-27 21:48:58 8.89MB rpc
1
基于Cadence 618的两级运算放大器电路版图设计(低频增益达87dB,GBW 30MHz,详尽原理图及仿真过程),基于Cadence 618的两级运算放大器电路版图设计,涵盖工艺细节、仿真及安装指南,详尽设计文档和仿真报告,低频增益达87dB,单位增益带宽积GBW 30MHz。,两级运算放大器电路版图设计 cadence 618 电路设计 版图设计 工艺tsmc18 低频增益87dB 相位裕度80 单位增益带宽积GBW 30MHz 压摆率 16V uS 有版图,已过DRC LVS,面积80uX100u 包安装 原理图带仿真过程,PDF文档30页,特别详细,原理介绍,设计推导,仿真电路和过程仿真状态 ,两级运算放大器; 电路版图设计; 工艺tsmc18; 性能指标(低频增益、相位裕度、GBW、压摆率); 版图; DRC LVS验证; 面积; 包安装; 原理图; 仿真过程; PDF文档。,基于TSMC18工艺的87dB低频增益两级运算放大器版图设计及仿真研究
2025-06-22 22:27:54 5.6MB
1
"TSMC工艺下两级运算放大器电路版图设计与仿真详解",两级运算放大器电路版图设计 cadence 618 电路设计 版图设计 工艺tsmc18 低频增益87dB 相位裕度80 单位增益带宽积GBW 30MHz 压摆率 16V uS 有版图,已过DRC LVS,面积80uX100u 包安装 原理图带仿真过程,PDF文档30页,特别详细,原理介绍,设计推导,仿真电路和过程仿真状态 ,两级运算放大器; 电路版图设计; 工艺TSMC18; 频率增益; 相位裕度; 单位增益带宽积GBW; 压摆率; 版本控制; 原理图; 仿真过程; PDF文档。,基于TSMC18工艺的87dB低频增益两级运算放大器版图设计及仿真研究
2025-06-18 17:22:27 950KB
1