这个资源是为了帮助研究人员和开发者在火灾预防和安全监控领域取得突破而设计的。本资源包含以下几个关键部分: 1、火焰数据集:精心策划和注释的高质量火焰图像集,覆盖了不同类型和大小的火焰场景。这个数据集对于训练和测试火焰检测算法至关重要。 2、代码:完整的YOLOv8算法实现代码,针对火焰检测进行了优化。代码清晰、注释详细,易于理解和定制。 3、GUI界面:为了更方便地使用和展示火焰识别模型,我复现了一个直观的图形用户界面(GUI)。这个界面不仅易于操作,还可以实时展示检测结果。 4、内置训练好的模型文件:为了让用户能够即刻使用该工具,我提供了一个已经在火焰数据集上训练好的YOLOv8模型。这个模型经过精心训练,具有高精度和良好的泛化能力。 此外,我还提供了详细的安装和使用指南,帮助您轻松地部署和运行这个系统。无论您是在进行学术研究,还是在开发商业应用,这个资源都将是您不可或缺的工具。
2025-04-22 17:22:35 256.87MB 数据集
1
MATLAB中BP神经网络的火焰识别是一个利用人工神经网络理论建立起来的模拟生物神经网络处理信息的模型,广泛应用于模式识别、信号处理、数据分类等多个领域。BP神经网络(Back Propagation Neural Network)是一种按误差逆传播算法训练的多层前馈神经网络,能够进行复杂函数逼近,学习和存贮大量的输入-输出模式映射关系,无需精确的数学描述。 在火焰识别的应用场景中,BP神经网络可以通过学习大量的火焰图像特征来实现对火焰的准确识别。该过程通常包括以下几个步骤: 1. 数据采集:首先需要收集足够数量的火焰图像数据作为训练样本。这些数据可以是不同环境、不同光照、不同火焰形状和大小的图片。 2. 图像预处理:对收集到的图像进行预处理操作,包括灰度化、滤波去噪、归一化、边缘检测等,以降低图像的复杂度并提取出有用的特征。 3. 特征提取:从预处理过的图像中提取火焰的特征,如颜色、纹理、形状等。这些特征将作为神经网络的输入。 4. 网络训练:使用提取的特征和对应的标签(是否为火焰)来训练BP神经网络。网络将通过不断调整内部权重和偏置,以最小化输出和目标之间的误差。 5. 模型评估:通过测试集评估训练好的BP神经网络模型的性能,确保其具有良好的泛化能力。 6. 实时识别:将训练好的模型部署到实际应用中,对实时采集的图像进行处理,判断是否存在火焰并作出相应反应。 在MATLAB环境中,可以利用其提供的神经网络工具箱(Neural Network Toolbox)来实现BP神经网络的构建、训练和测试。MATLAB的图形用户界面(GUI)功能则能够使用户更直观地进行操作,如调整网络结构、设置参数等,从而更高效地完成火焰识别系统的开发。 此外,MATLAB还提供了图像处理工具箱(Image Processing Toolbox),支持各种图像处理函数和工具,极大地简化了图像预处理和特征提取的复杂度。这些工具箱的协同使用,使得MATLAB成为进行图像识别和模式识别研究和应用开发的理想平台。 MATLAB中BP神经网络的火焰识别是一个结合了图像处理技术和机器学习算法的综合性技术,能够有效地应用于火焰检测和监控领域,提高火灾预防和应急处理的智能化水平。
2025-04-14 19:16:09 7.62MB matlab
1
MATLAB程序:图片与视频火焰检测系统——精确跟踪火焰区域框选,基于MATLAB的程序:图片与视频火焰检测系统——自动追踪火焰区域框选,图片视频火焰检测MATLAB程序 有两个一个可以图片火焰检测。 一个可以对视频进行火焰检测。 视频的素材是用的网上的素材,可以成你自己的视频。 会跟踪火焰的区域框选。 本全网无重复。 经过多次测试,保证能够成功运行。 程序自带多张图片和两个视频。 ,图片视频火焰检测; MATLAB程序; 火焰区域框选; 程序测试成功; 自带素材,标题:火焰检测MATLAB程序,支持图片与视频处理,带区域跟踪功能,测试成功,含多例样图与视频。
2025-04-10 17:45:06 10.85MB kind
1
训练好的火焰烟雾检测模型,YOLOV9
2024-09-02 09:26:00 98.01MB
1
标题中的“火焰+烟雾检测数据集+标签-01”表明这是一个专门针对火焰和烟雾检测训练的数据集,其中包含了图像以及相应的标签信息。这个数据集是深度学习领域的一个重要资源,尤其对于目标检测任务而言,它是模型训练的基础。 在描述中提到,该数据集包含2500张图像,这些图像旨在帮助模型识别和区分火焰与烟雾。数据集中的标签是以JSON格式提供的,这意味着每张图片都有一个对应的JSON文件,详细描述了图像中火焰或烟雾的位置和其他相关信息。JSON是一种轻量级的数据交换格式,易于人阅读和编写,同时也方便机器解析和生成,是处理结构化数据的理想选择。 标签中提到了“深度学习”、“目标检测”和“YOLO”,这暗示了该数据集可以用于训练基于深度学习的目标检测模型,特别是YOLO(You Only Look Once)算法。YOLO是一种实时目标检测系统,它的优势在于速度快、效率高,能够在一帧视频中一次性完成检测,非常适合实时监控场景下的火焰和烟雾检测。 在深度学习领域,目标检测是计算机视觉的一个重要子领域,它旨在识别并定位图像中的特定对象。对于火焰和烟雾检测,目标检测可以帮助早期发现火灾隐患,从而及时采取措施防止灾难发生。YOLO的工作原理是将图像分割成多个小网格,并预测每个网格内是否存在目标以及目标的类别和边界框。通过优化网络参数,模型能够学习到火焰和烟雾的特征,提高检测精度。 在实际应用中,这样的数据集可以被用于训练和验证深度学习模型,例如使用YOLOv3或更新的版本。训练过程通常包括前向传播、反向传播和优化,以最小化损失函数,从而提高模型的预测能力。数据集的大小(2500张图片)虽然相对较小,但足够用于初步的模型训练和验证,特别是在数据增强技术的帮助下,如翻转、缩放、裁剪等,可以有效地扩充数据集,增加模型的泛化能力。 总结来说,这个“火焰+烟雾检测数据集+标签-01”是一个适用于深度学习目标检测任务的资源,特别是针对YOLO框架。它包含的2500张图片和JSON标签信息为训练和评估模型提供了基础,对于防火安全监测系统开发或相关研究具有重要意义。通过利用该数据集,开发者和研究人员可以构建更准确、快速的火焰和烟雾检测系统,提升公共安全水平。
2024-08-23 10:26:39 222.87MB 深度学习 目标检测 YOLO
1
火焰识别 + yolov8 + 测试视频 + 预测权重.pt 资源包含: 1.预测权重 2.测试视频 直接下载后放入yolov8官方工程中,直接执行官方detect即可进行火焰识别
2024-04-23 19:23:17 91.76MB 目标检测 YOLO 火焰识别 计算机视觉
1
利用现有的半自动火焰切割机,针对其调速范围窄导致无法实现切割钢管的局限性,对其电路进行技术改造,实现了钢管的半自动切割,解决了采用其他加工方式而带来的断面质量不佳及效率低下的问题。
2024-02-25 15:00:18 413KB 行业研究
1
气相色谱-火焰光度检测器测定海水中14种有机磷农药,徐恒振,王艳洁,建立了海水样品中14种有机磷农药的毛细管气相色谱-火焰光度检测器测定方法。对色谱升温程序、萃取剂类型、萃取剂用量、样品的类型
2024-02-23 23:13:36 466KB 首发论文
1
教程请参考:https://blog.csdn.net/Little_Carter/article/details/131387425 欢迎浏览我的最新资源,这个全面的资源是为了帮助研究人员和开发者在火灾预防和安全监控领域取得突破而设计的。本资源包含以下几个关键部分: 1、火焰数据集:精心策划和注释的高质量火焰图像集,覆盖了不同类型和大小的火焰场景。这个数据集对于训练和测试火焰检测算法至关重要。 2、代码:完整的YOLOv8算法实现代码,针对火焰检测进行了优化。代码清晰、注释详细,易于理解和定制。 3、GUI界面:为了更方便地使用和展示火焰识别模型,我复现了一个直观的图形用户界面(GUI)。这个界面不仅易于操作,还可以实时展示检测结果。 4、内置训练好的模型文件:为了让用户能够即刻使用该工具,我提供了一个已经在火焰数据集上训练好的YOLOv8模型。这个模型经过精心训练,具有高精度和良好的泛化能力。 此外,我还提供了详细的安装和使用指南,帮助您轻松地部署和运行这个系统。无论您是在进行学术研究,还是在开发商业应用,这个资源都将是您不可或缺的工具。期待您的下载和反馈!
2023-11-28 09:46:03 258.42MB 人工智能 火焰识别 Python 目标检测
1
火焰+烟雾数据集1000张左右,火焰是0,烟雾是1
2023-10-31 13:31:49 477.31MB 数据集 火焰数据集 烟雾数据集
1