### 遗传算法与禁忌搜索算法的混合策略 #### 摘要 本文探讨了遗传算法(Genetic Algorithm, GA)与禁忌搜索算法(Tabu Search, TS)的混合应用,旨在通过融合两种算法的优点来提高求解复杂优化问题的能力。文章概述了遗传算法与禁忌搜索算法的基本原理及其在解决高维度组合优化问题中的应用;接着,通过对比分析,阐述了这两种算法的特点及差异;提出了一种将禁忌搜索算法的记忆特性融入遗传算法的新型混合策略,并通过旅行商问题(Traveling Salesman Problem, TSP)的实际案例验证了该混合策略的有效性。 #### 关键词 - 遗传算法 - 禁忌搜索 - 混合策略 - 旅行商问题 #### 1. 遗传算法与禁忌搜索算法概述 ##### 1.1 遗传算法 遗传算法是一种基于自然选择和遗传学原理的全局优化技术,它模仿生物进化的过程来寻找最优解。其核心思想包括: - **初始化**:随机生成一组初始解,即种群。 - **选择操作**:根据适应度函数评价个体的质量,并据此进行选择。 - **交叉操作**:模拟生物遗传学中的基因交换,以一定的概率将两个个体的部分特征组合成新的个体。 - **变异操作**:以较小的概率改变个体的一部分特征,增加种群多样性。 - **终止条件**:当满足预设的迭代次数或达到满意的解时停止算法。 遗传算法能够在大规模的解空间中快速探索,尤其适用于处理高维度和非线性的优化问题。然而,遗传算法也存在一些局限性,比如容易陷入局部最优解、收敛速度较慢等问题。 ##### 1.2 禁忌搜索算法 禁忌搜索算法是一种局部搜索算法,其特点是引入了“记忆”机制来避免陷入局部最优解。禁忌搜索的核心步骤包括: - **初始解**:设定一个初始解,并记录下来。 - **邻域结构**:定义一个邻域结构,该结构描述了如何从当前解生成一系列可能的新解。 - **禁忌表**:用于存储最近被访问过的解,防止重复搜索同一解。 - **选择操作**:从当前解的邻域中选择一个未被禁忌的最好解作为下一个解。 - **更新禁忌表**:根据一定的规则更新禁忌表,以控制搜索过程中的动态行为。 - **终止条件**:当达到预定的迭代次数或找到满意解时停止搜索。 禁忌搜索算法的优势在于能够有效利用记忆机制跳出局部最优解,但缺点是可能会过早收敛,且对初始解的选择较为敏感。 #### 2. 遗传算法与禁忌搜索算法的混合策略 为了克服各自算法的局限性,本文提出了一种遗传算法与禁忌搜索算法的混合策略。该策略的主要特点包括: - **记忆功能的引入**:将禁忌搜索算法的记忆特性融入遗传算法的搜索过程中,以提高全局搜索能力。 - **新重组算子的设计**:构建了一种结合了禁忌搜索特性的重组算子,以增强遗传算法的多样性。 - **变异算子的改进**:将禁忌搜索算法作为遗传算法的变异算子,通过动态调整禁忌表来实现更有效的局部搜索。 #### 3. 实验结果与分析 以经典的旅行商问题为例,通过对比遗传算法和混合策略的效果,验证了混合策略的有效性和优越性。实验结果表明,在求解复杂组合优化问题时,混合策略相比于单一遗传算法在以下几个方面表现更为优秀: - **收敛速度**:混合策略能够更快地接近最优解。 - **解的质量**:混合策略找到的解质量更高,更接近全局最优解。 - **稳定性**:混合策略的性能更加稳定,不易受到初始条件的影响。 #### 结论 通过本文的研究,我们发现将遗传算法与禁忌搜索算法进行混合,可以有效地利用各自的优点,从而在解决复杂优化问题时展现出更好的性能。未来的研究方向可以进一步探索更多类型的混合策略,以及如何更有效地结合其他启发式算法来提高求解效率和准确性。
2024-08-12 11:09:42 191KB
1
基于混合策略改进的优化算法+基于混合策略改进的优化算法在支持向量机回归(SVR)中的应用,混合策略为Sobol序列初始化、惯性权重及柯西步长三种改进策略的混合,并已锂离子电池容量数据为例,进行测试,亲测有效。
2022-06-06 13:05:20 3.03MB 群智能算法 支持向量机
4.3常规正交噪声MIMO雷达信号 基于噪声的MIMO雷达要求设计足够数量的具有良好自相关特性的一组噪声 信号,且它们之间的互相关电平要尽可能小。白噪声的相关维无穷,则理论上可 以产生无数的正交波形,这就使得噪声成为MIMO雷达波形的候选。 采用MatlabRl4中的高斯分布的随机数发生器(利用Marsaglia算法1158J)产 生一个2陋长的噪声序列(采样率为2GHz),如图4.1(a)所示。图4.1(b)给出了 相应的自相关函数。
2022-06-01 10:30:46 5.83MB MIMO
1
混合策略混合策略纳什均衡 一个数值例子 3,1 博弈方2 A B C D 1,5 5,2 2,3 博弈方1
2021-12-29 20:16:39 409KB 博弈论
1
基于混合策略改进的鲸鱼优化算法.rar
2021-12-22 15:06:18 1.15MB
<html dir="ltr"><head><title></title></head><body>针对当前各种粒子群优化算法解决问题时存在的局限性, 提出一种基于混合策略自适应学习的粒子群优化算法(HLPSO). 该算法从收敛速度、跳出局部极值、探索、开发几个不同角度融合了4 种具有不同优势的变异策略,当面对不同形态的复杂问题时通过自适应学习机制选择出合适的策略来完成全局寻优. 通过对7 个标准测试函数的仿真实验并与其他算法相比较, 所得结果表明了所提出的算法具有较快的收敛速度、较高的精度以及很强的跳出局部极值的能力.</body></html>
1
混合策略改进的乌鸦搜索算法
2021-12-05 09:14:19 938KB 混合策略 乌鸦搜索算法
多元标定中基于变量空间连续收缩的混合变量选择策略https://doi.org/10.1016/j.aca.2019.01.022 近红外光谱多元分析中的变量选择方法概述https://doi.org/10.1016/j.trac.2019.01.018 在本研究中,我们提出了一种基于变量空间连续收缩的混合变量选择策略,这是变量组合种群分析(VCPA)的核心思想。 基于VCPA的混合策略在第一步中不断地将变量空间从大到小收缩,并在修改后的VCPA的基础上进行优化。 然后,它采用迭代保留信息变量 (IRIV) 和遗传算法 (GA) 在第二步中进行进一步优化。 它充分利用了 VCPA、GA 和 IRIV,弥补了它们在变量数量多时的不足。 三个 NIR 数据集和三个变量选择方法,包括两种广泛使用的方法(竞争性自适应重加权采样、CARS 和遗传算法-区间偏最小二乘法、GA-iPLS)和一种混
2021-11-17 14:42:38 788KB matlab
1
【优化求解】基于混合策略的改进灰狼优化算法matlab源码.md
2021-08-24 09:17:42 12KB 算法 源码
1
针对标准WOA 算法初始种群分布不均、收敛速度较慢、全局搜索能力弱且易陷入局部最优等问题,提出一种混合策略改进的鲸鱼优化算法。首先,采用 Sobol 序列初始化种群以使初始解在解空间分布更均匀;然后,通过非线性时变因子和惯性权重平衡并提高全局搜索及局部开发能力, 并结合随机性学习策略增加迭代过程中种群的多样性; 最后,引入柯西变异提升算法跳出局部最优的能力。仿真结果表明,基于混合策略改进的鲸鱼优化算法在寻优精度及收敛速度上均有明显提升。 资源包括:matlab代码+原文献+仿真结果图