内容概要:本文详细介绍了如何使用MATLAB 2016a进行固定翼飞机六自由度模型的Simulink建模。首先概述了六自由度模型的概念及其重要性,然后逐步讲解了建模的具体步骤,包括创建新模型、添加和配置环境模块、飞机动力学模块、动力系统模块以及运动学求解模块。文中还展示了输入和输出变量的定义,并提供了详细的源码和四个飞机说明文件,以便于理解和维护模型。最后,通过Simulink仿真实验,验证了模型的有效性和实用性。 适合人群:航空航天工程领域的研究人员和技术人员,尤其是对飞行器动态模拟感兴趣的工程师。 使用场景及目标:适用于研究和开发固定翼飞机的动态行为模拟,帮助优化飞机设计和控制策略。通过该模型,用户可以在虚拟环境中测试不同的控制指令和环境条件对飞机性能的影响。 阅读建议:读者可以通过跟随文中的具体步骤,在MATLAB环境下动手实践,加深对固定翼飞机六自由度模型的理解。同时,利用提供的源码和说明文件,进一步探索和改进模型。
2025-05-16 00:53:18 1006KB Simulink MATLAB 飞行动力学
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-05-12 19:40:40 2.96MB matlab
1
内容概要:本文详细介绍了线接触弹性流体润滑问题的求解方法,特别是利用DC-FFT(直接卷积-快速傅里叶变换)在MATLAB中实现弹性变形的高效计算。文章首先解释了线接触弹性流体润滑的基本概念及其重要性,接着阐述了DC-FFT方法的工作原理,即通过傅里叶变换将接触压力分布转换到频域进行计算,再通过逆变换返回时域获得弹性变形。随后展示了具体的MATLAB编程步骤,包括参数设置、压力分布生成、DC-FFT计算以及结果可视化。此外,还讨论了一些常见的数值问题及其解决方案,如压力负值处理和收敛速度优化。 适合人群:机械工程领域的研究人员和技术人员,尤其是那些对弹性流体润滑和数值计算感兴趣的人。 使用场景及目标:适用于需要精确模拟和分析机械部件(如齿轮、轴承)在润滑条件下的弹性变形的研究项目。目标是提高机械部件的性能和寿命,优化润滑系统的设计。 其他说明:文中提供的MATLAB代码为简化版本,旨在帮助读者理解和掌握DC-FFT方法的核心思想。实际应用中还需考虑更多的复杂因素,如不同类型的流体特性和温度效应。
2025-05-12 14:31:25 254KB
1
基于遗传算法的配送中心选址问题MATLAB动态求解系统:可调整坐标与需求量,基于遗传算法的配送中心选址问题Matlab求解方案:可调整坐标、需求量和中心数量,遗传算法配送中心选址问题matlab求解 可以修改需求点坐标,需求点的需求量,备选中心坐标,配送中心个数 注:2≤备选中心≤20,需求点中心可以无限个 ,遗传算法; 配送中心选址问题; MATLAB求解; 需求点坐标; 需求量; 备选中心坐标; 配送中心个数,基于遗传算法的配送中心选址问题优化:可调需求与坐标的Matlab求解 遗传算法是一种模仿生物进化机制的搜索和优化算法,它通过模拟自然选择和遗传学原理来解决复杂的优化问题。配送中心选址问题是物流管理中的一个关键问题,它涉及确定一个或多个配送中心的最佳位置,以便最小化运输成本、提高服务效率、满足客户需求,并适应市场需求的变化。MATLAB是一种高性能的数值计算和可视化软件,它广泛应用于工程计算、数据分析和算法开发等领域。 本文主要探讨了如何利用遗传算法解决配送中心选址问题,并通过MATLAB实现动态求解系统。该系统允许用户根据实际需求调整需求点的坐标、需求量、备选中心的坐标以及配送中心的数量。通过这种方式,可以在不同条件和约束下,找到最适合的配送中心布局方案。 在配送中心选址问题中,需求点坐标和需求量的调整意味着可以根据实际情况变化来优化选址方案。例如,随着商业发展或人口迁移,某些区域的需求量可能会增加,而其他区域的需求量可能会减少。动态调整需求点坐标和需求量可以帮助企业更好地适应市场的变化,从而在竞争中保持优势。 备选中心坐标的调整同样重要。在现实中,备选中心的位置可能会受到土地价格、交通条件、环境政策等多种因素的影响。通过调整备选中心的坐标,可以模拟出最佳的选址方案,实现成本效益最大化。 此外,配送中心个数的调整也是系统设计的一个亮点。在不同的市场需求和竞争环境下,可能需要不同数量的配送中心来保持竞争力。例如,在需求量大且分布广泛的情况下,可能需要设置多个配送中心以减少运输距离和时间,提高配送效率。 在MATLAB环境下,遗传算法的实现可以通过编写相应的代码来完成。这些代码通常包括适应度函数的设计、种群的初始化、选择、交叉和变异操作的实现等步骤。通过迭代执行这些操作,遗传算法可以在解空间中进行有效搜索,最终找到一组适应度较高的解,即选址方案。 该系统还配备了直观的图形用户界面(GUI),使得用户即使没有深厚的数学背景或编程经验,也能够方便地使用系统进行选址问题的求解。用户可以通过GUI输入需求点和备选中心的数据,设置遗传算法的参数,然后系统会自动运行算法并输出最优解。 实际应用中,遗传算法在配送中心选址问题中的优势主要体现在其强大的全局搜索能力和对复杂问题的处理能力。它能够在大规模的搜索空间中寻找到满意的解决方案,并且算法本身具有一定的鲁棒性,对于问题的初始条件和参数设置不敏感。这些特性使得遗传算法在物流优化、城市规划、交通管理等多个领域都有着广泛的应用前景。 基于遗传算法的配送中心选址问题的MATLAB动态求解系统提供了一个灵活、高效的工具,帮助决策者在快速变化的市场环境中做出科学合理的选址决策,从而提高企业的竞争力和经济效益。
2025-05-12 01:12:53 532KB scss
1
内容概要:本文详细介绍了如何使用MATLAB和物理信息神经网络(PINN)求解二维泊松方程。首先简述了泊松方程及其重要性,随后深入探讨了PINN的工作原理,即通过将物理方程作为约束加入神经网络训练过程,使网络能够学习到符合物理规律的解。文中提供了完整的MATLAB代码实现,涵盖神经网络结构搭建、训练数据准备、损失函数定义、训练过程及结果可视化等多个环节。此外,还讨论了一些实用技巧,如选择合适的激活函数、调整网络层数、优化训练参数等。 适用人群:适用于具有一定MATLAB编程基础和技术背景的研究人员、工程师或学生,特别是那些对数值模拟、物理学建模感兴趣的群体。 使用场景及目标:本方法可用于快速求解各种物理问题中的泊松方程,尤其适合于那些难以用传统方法精确求解的情况。通过这种方式,研究者可以获得更加直观的理解,并探索不同条件下解的变化趋势。 其他说明:尽管PINN相比传统方法有诸多优势,但在某些特定情况下(如存在奇异点),仍需谨慎对待。同时,随着硬件性能提升,未来有望进一步提高求解效率和准确性。
2025-05-10 21:18:41 270KB
1
实验1 建立不允许缺货的生产销售存储模型。设生产速率为常数k, 销售速率为常数r, k>r.在每个生产周期内T内,开始的一段时间( ),一边生产一边销售,后来的一段时间 只销售不生产,画出储存量 的图形。设每次生产准备费为 ,单位时间每件产品储存费为 以总费用最小为目标确定最优生产周期。讨论 和 的情况。 实验2 阅读实验教材第五章中的最速降线问题以及本目录中的参考材料,了解最速降线问题的原理和求解的方法。 实验3 阅读本目录中的铅球掷远问题的求解,完善该模型,给出该问题的完整数学模型,并利用Matlab进行求解。 【Matlab优化模型求解】 在数学模型的构建和求解过程中,Matlab是一个强大的工具,尤其在优化问题中,它提供了多种内置的优化算法和工具箱,使得模型的求解变得更为便捷。本实验主要涉及到三个实际问题,分别是不允许缺货的生产销售存储模型、最速降线问题和铅球掷远问题。 1. **生产销售存储模型** - **模型设定**:在生产销售存储模型中,生产速率k和销售速率r是常数,且k>r。生产周期T内,前一段时间一边生产一边销售,后一段时间仅销售不生产。每次生产准备费为c1,单位时间每件产品储存费为c2。目标是最小化总费用。 - **模型建立**:利用微积分,可以将储存量q(t)表示为时间t的函数,分两段:q(t)=(k-r)*t (生产销售阶段),q(t)=k*(T-t)-r*t (仅销售阶段)。根据图示,可以推导出最优生产周期T与k、r的关系k*r*T=k^2。 - **费用计算**:总费用C'包括生产准备费和储存费,C'(T)=[(k-r)^2*T]/2+c1。平均每天费用C(T) = C'(T)/T,分析k和r对费用的影响,当k>>r时,总费用增加,反之则减少。 2. **最速降线问题** - **问题原理**:这是一个经典物理问题,寻找质点从A到B下滑时间最短的曲线,称为最速降线。解这个问题需要利用变分法,通过函数极值和基本引理,得到最速降线的方程:x=c(t-sint), y=c(1-cost),其中c是待定参数,由边界条件确定。 - **摆线**:最速降线实际上是摆线,它是圆在直线上的滚动轨迹。通过选取不同半径的圆,摆线可以经过任何第一象限的点,包括点B(x2, y2)。 3. **铅球掷远问题** - **模型假设**:铅球抛出后沿抛物线运动,忽略空气阻力,已知初速度V,出手高度h,角度θ,重力加速度g。 - **模型建立**:分别计算铅球上升和下降的时间、高度,水平位移。铅球的水平距离R由初速度Vx和总时间t决定,其中Vx=V*sinθ,t=t1+t2,t1和t2分别是上升和下降时间,通过微分求解最优投掷角度。 在实际应用Matlab解决这些问题时,可以使用内置的优化函数如`fmincon`或`fminunc`来寻找目标函数的最小值。对于生产销售模型,可以设定T为变量,构造目标函数C(T)并求解。对于最速降线和铅球掷远问题,可能需要利用数值方法如四阶龙格-库塔法或牛顿法来求解方程组,或者直接对角度θ进行优化,以最大化投掷距离。 通过这些实验,学生不仅可以掌握Matlab的优化求解技巧,还能深入理解实际问题背后的数学模型和物理原理。同时,通过编写和运行Matlab程序,提高了解决实际问题的能力。
2025-05-07 23:40:25 2.52MB
1
公司里流行玩推箱子游戏,总共15关,可大家都被第11关难住了,一时没人能解,我写了个专门求解该问题的程序,只要把棋盘(0代表空闲,1代表阻碍物,2代表目标,3代表箱子on目标,4代表箱子,5代表worker)输入到txt文件中,修改加载的文件的代码位置,运行程序,不久就能给出计算结果,并以字符形式给出箱子的移动步骤。该程序纯属个人兴趣所为,现将其源代码公开,算是给同行们抛砖引玉吧
2025-05-07 08:25:56 31KB 源码
1
HFSS与MATLAB联合仿真设计超材料程序:一键自动建模、参数设置与电磁参数提取,HFSS与MATLAB联合仿真超材料设计程序:自动建模、材料设置、条件配置、求解扫频及参数提取一体化解决方案,HFSS和MATLAB联合仿真设计超材料程序,程序包括自动建模(可以改变超材料的结构参数),材料设置,边界和激励条件设置,求解扫频设置,数据导出以及超材料电磁参数提取,一步到位。 ,HFSS; MATLAB; 联合仿真设计; 超材料程序; 自动建模; 结构参数调整; 材料设置; 边界条件设置; 激励条件设置; 求解扫频; 数据导出; 电磁参数提取。,HFSS与MATLAB联合超材料仿真设计程序:自动建模与参数提取一体化
2025-05-05 21:04:47 7.58MB scss
1
"matlab小程序-平面应力有限元求解器"是基于Matlab编程环境开发的一个计算工具,用于解决工程中的平面应力问题。在机械工程、土木工程、航空航天等领域,平面应力问题广泛存在,例如薄板结构分析、桥梁设计等。通过有限元方法(Finite Element Method, FEM),我们可以将复杂的连续体问题离散化为多个简单的元素,然后对每个元素进行分析,最后汇总得到整个结构的解。 这个Matlab小程序的核心在于将有限元方法应用于平面应力问题的求解。程序主要包括以下几个关键部分: 1. **main.m**:这是程序的主入口文件,它负责调用其他子函数,设置输入参数(如网格划分、边界条件、材料属性等),并显示计算结果。用户通常在此文件中修改或输入问题的具体信息。 2. **strain_compu.m**:这个文件实现了应变计算功能。在有限元分析中,首先需要根据节点坐标和单元类型计算单元内部的应变。应变是衡量物体形状变化的物理量,是位移的导数。此函数将节点位移转换为单元应变,为下一步计算应力做准备。 3. **stiffness.m**:刚度矩阵计算是有限元法的关键步骤。该函数根据单元的几何特性、材料属性和应变状态计算单元刚度矩阵。刚度矩阵反映了结构对变形的抵抗能力,与力和位移的关系密切。 4. **Assembly.m**:组装过程涉及到将所有单元的局部刚度矩阵合并成全局刚度矩阵,并处理边界条件。在这一阶段,程序会消除自由度,构建系统方程,以便后续求解。 在Matlab中实现有限元求解器,通常包括以下步骤: 1. **模型定义**:定义问题的几何形状,选择适当的单元类型(如线性三角形或四边形单元)来覆盖模型。 2. **网格生成**:将模型划分为一系列的小单元,生成节点和连接它们的元素。 3. **边界条件设定**:指定固定边界、荷载等外部条件,这些条件将影响结构的响应。 4. **刚度矩阵与载荷向量**:计算每个单元的刚度矩阵并进行组装,同时确定作用在结构上的载荷向量。 5. **求解线性系统**:使用Matlab的内置函数(如`linsolve`或`sparse`矩阵操作)求解由刚度矩阵和载荷向量构成的线性系统。 6. **后处理**:计算并显示结构的位移、应力、应变等结果,可以绘制图形以直观展示分析结果。 这个Matlab小程序为用户提供了一种便捷的工具,无需深入理解有限元法的底层细节,即可进行平面应力问题的模拟。用户可以根据具体需求调整代码,扩展其功能,例如引入非线性效应、考虑热载荷等。通过学习和使用这个程序,不仅可以掌握有限元分析的基本原理,还能提高Matlab编程技能。
2025-04-24 22:52:06 3KB matlab
1