Despite the fact that many 3D human activity benchmarks being proposed, most existing action datasets focus on the action recognition tasks for the segmented videos. There is a lack of standard large-scale benchmarks, especially for current popular data-hungry deep learning based methods. In this paper, we introduce a new large scale benchmark (PKU-MMD) for continuous multi-modality 3D human action understanding and cover a wide range of complex human activities with well annotated information. PKU-MMD contains 1076 long video sequences in 51 action categories, performed by 66 subjects in three camera views. It contains almost 20,000 action instances and 5.4 million frames in total. Our dataset also provides multimodality data sources, including RGB, depth, Infrared Radiation and Skeleton. With different modalities, we conduct extensive experiments on our dataset in terms of two scenarios and evaluate different methods by various metrics, including a new proposed evaluation protocol 2D-AP. We believe this large-scale dataset will benefit future researches on action detection for the community
2025-06-06 18:15:59 1.56MB
1
农业数据集通常是指包含各种与农业生产相关的信息和数据的集合。这些数据可以包括作物产量、种植面积、天气情况、土壤类型、灌溉系统、农业机械使用情况、肥料使用量、农业政策、市场价格以及农业劳动力等。通过对这些数据的收集、整理和分析,研究人员、农业企业和政府机构可以更好地理解农业生产的现状、趋势以及潜在问题,进而作出更加科学的决策。 农业数据集的种类多样,可以从不同的角度对数据进行分类。例如,按照数据类型可以分为定量数据和定性数据;按照数据的来源可以分为实验数据、观测数据和统计数据;按照数据的详细程度可以分为宏观数据和微观数据;按照数据的用途可以分为基础研究数据、应用研究数据和商业数据。 大数据背景下,农业数据集的处理和分析尤为重要。大数据技术能够处理以往无法处理的海量、多样和高速的数据,这为农业领域提供了全新的视角。例如,通过大数据分析可以预测天气变化对农作物生长的影响,也可以通过分析市场数据来指导农产品的种植和销售。 在具体操作层面,农业数据集的分析通常涉及数据预处理、数据存储、数据挖掘、统计分析和机器学习等多个环节。数据预处理包括数据清洗、数据转换和数据规约等步骤,目的是消除数据中的噪声和不一致性,提高数据质量。数据存储则涉及对数据的存储架构的选择,确保数据的安全性和可访问性。数据挖掘则侧重于从数据中提取知识,包括模式识别、关联规则挖掘和聚类分析等方法。统计分析则运用统计学原理来分析数据集中的变量之间的关系。机器学习技术则可以通过建立模型来预测或分类农业数据。 为了提高农业数据集的可用性,现代农业已经引入了物联网技术,通过传感器收集农田的实时数据,结合卫星遥感技术获取的宏观数据,形成一个全面的数据网络。这些数据不仅可以用于农作物的精准种植,还可以帮助实现病虫害的早期预警,提高农作物的产量和质量。 农业数据集的应用领域非常广泛,从作物育种、栽培管理到农业经济分析,再到农业政策制定等,都离不开农业数据集的支撑。例如,在作物育种方面,通过对不同品种作物的生长数据和产量数据的分析,可以筛选出最适合当地种植的优质品种。在农业经济分析方面,通过对农产品市场数据的分析,可以帮助农民和企业预测市场趋势,规避市场风险。 此外,农业数据集的应用还涉及环境监测、资源管理、气候变化适应等多个方面。随着科技的进步,农业数据集的内容和处理方式将不断更新,其在农业生产中的作用也将越来越大。 农业数据集的管理和应用还面临着一些挑战,比如数据的标准化、数据隐私保护、数据所有权的界定以及跨领域数据共享等问题。这些问题的解决需要政府、科研机构和企业的共同努力,通过制定相关标准和政策,推动农业数据的开放和共享,促进农业的可持续发展。 农业数据集是现代农业发展的重要资源,其在农业生产、管理和决策中的作用越来越凸显。随着大数据、人工智能等技术的应用,农业数据集的分析和利用效率将进一步提升,为实现智慧农业和可持续发展目标提供强有力的支持。
2025-06-06 13:18:12 4.5MB
1
该数据集名为“四川及周边滑坡泥石流灾害高精度航空影像及解译数据集”,主要涵盖了四川地区以及其周边区域遭受滑坡和泥石流灾害的详细情况。这个数据集利用了高精度的航空遥感技术,通过拍摄和分析航空影像,为地质灾害的研究、预防和应急响应提供了宝贵的数据支持。 一、航空遥感技术 航空遥感是通过在空中拍摄地面物体,利用传感器捕获地表反射或辐射的电磁波信息,进行地理信息获取的一种技术。它广泛应用于地质勘查、环境监测、城市规划等领域。在灾害监测中,航空遥感能够快速、大面积地获取灾害现场的实时信息,帮助专家评估灾害范围、程度以及可能的发展趋势。 二、高精度航空影像 高精度航空影像通常指的是分辨率小于1米甚至达到厘米级别的遥感图像。这种高清晰度的影像可以清晰地辨别地表细节,如房屋、道路、植被等,对于识别滑坡、泥石流等地质灾害特征至关重要。通过对这些影像的分析,可以精确识别出灾害的发生位置、规模,以及灾害对周围环境的影响。 三、滑坡与泥石流灾害 滑坡是指山坡上的土体或岩石在重力作用下沿着斜坡下滑的现象,常由地震、降雨、人为开挖等因素引发。泥石流则是由于降水等引发的含有大量固体物质的特殊洪流,具有极强的破坏力。这两种灾害在四川及其周边地区较为常见,尤其是地震后,地表稳定性下降,更容易发生此类灾害。 四、解译数据集 解译数据集是通过专业人员对航空影像进行分析解读后生成的一系列信息,包括灾害点的位置、大小、形状、灾前灾后的变化等。这些信息通常以矢量数据(如点、线、面)的形式存在,可以方便地在GIS(地理信息系统)中进行叠加分析和展示。解译数据集对于灾害风险评估、灾后恢复规划和防灾减灾策略的制定具有重要价值。 五、应用领域 1. 地质灾害预警:通过持续监测,及时发现地质灾害的征兆,提前发布预警,减少人员伤亡和财产损失。 2. 灾害应急响应:在灾害发生后,为救援行动提供准确的信息,指导救援队伍的部署和行动路线。 3. 灾后重建:评估灾害影响,确定重建区域和方案,指导灾后恢复工作。 4. 地质环境研究:了解地质灾害的成因、发展规律,为预防同类灾害提供科学依据。 这个数据集整合了高精度航空影像和专业解析结果,为地质灾害的研究和管理提供了详实的资料,对于提升四川及其周边地区的防灾减灾能力具有重要意义。
2025-06-06 08:27:47 401B
1
在显微镜下观察生物世界时,我们经常能够发现一些微小而迷人的生命体,其中浮游藻类就是一群丰富多彩、形态多变的生物。这些微小的藻类生物对环境变化极为敏感,它们的种类和数量往往能够反映其所在水域的健康状况。因此,对浮游藻类进行精确识别和监测变得尤为重要。 近年来,随着机器学习和深度学习技术的飞速发展,基于计算机视觉的自动化检测技术开始被广泛应用于浮游藻类的识别和分类中。在这些技术中,卷积神经网络(CNN)及其衍生技术,如YOLO(You Only Look Once)算法,已经成为实现快速准确检测的重要工具。YOLO算法以其实时性、准确性的特点,在许多快速目标检测任务中得到了应用。 然而,任何高级的机器学习模型都需要大量的标注数据进行训练。因此,一个高质量、大规模、标注精细的数据集对于训练高效准确的检测模型至关重要。本次提供的数据集正是为了满足这一需求而生的。 该数据集名为“显微镜下浮游藻类生物检测数据集”,包含16239张图片,每张图片都经过了精确的手工标注,包括对应的VOC格式xml文件和YOLO格式txt文件。VOC格式广泛应用于物体检测与分割任务中,而YOLO格式则更适用于需要快速检测的应用场景。数据集中的每张图片都附有详细的标注信息,标注包括了80种不同类型的浮游藻类,例如Achnanthidium、Adlafia、Amphora、Anabaena、Aphanizomenon、Aulacoseira等。 此外,数据集中的每一类浮游藻类都标注了相应的框数,例如Achnanthidium框数为443,Adlafia框数为63,这样详尽的信息对于机器学习模型的训练尤为重要。通过这些标注,模型能够在训练阶段学习识别不同类型的浮游藻类,并在实际应用中快速准确地检测出相应的种类。 值得注意的是,该数据集采取的Pascal VOC格式和YOLO格式,为研究者提供了两种不同的数据标注方式,这不仅为不同的研究需求提供了便利,而且也提高了数据的可用性和灵活性。例如,VOC格式中包含的xml文件详细记录了对象的位置和类别,而YOLO格式的txt文件则以简洁的方式记录了物体的中心点坐标、宽度和高度等信息。 该数据集的发布无疑将大大推动浮游藻类生物检测技术的发展,帮助环境科学家和生物学家更加高效地进行水域生物的监测工作,同时也为相关领域的研究者提供了一个强有力的学习和研究工具。
2025-06-05 19:48:07 964KB 数据集
1
《Flink实战:案例源码与数据集解析》 Apache Flink是一款强大的开源流处理框架,它在实时数据处理领域有着广泛的应用。本资源“Flink案例源码和数据集.rar”提供了丰富的学习材料,包括实际操作的源代码以及配套的数据集,帮助我们深入理解Flink的工作原理和实践应用。 一、Flink核心概念与特性 Flink的核心概念主要包括流(Stream)、作业(Job)和算子(Operator)。流分为两种类型:无界流(Unbounded Stream)和有界流(Bounded Stream),无界流代表无限的数据流,有界流则表示有限的数据集合。Flink的作业是由多个算子组成的计算图,每个算子处理输入流并生成新的输出流。Flink的特性包括事件时间处理、状态管理、容错机制以及低延迟等。 二、Flink数据处理模型 Flink的处理模型基于数据流模型,分为DataStream API和Table & SQL API。DataStream API适合处理原始的无结构或半结构化的数据流,而Table & SQL API提供了一种声明式的方式来处理数据,更接近于传统的SQL查询。 三、案例源码解析 1. 数据读取与写入:源码中可能包含了如何使用Flink从各种数据源(如Kafka、HDFS、RabbitMQ等)读取数据,并将结果写入到不同的存储系统(如HBase、Cassandra或文件系统)。 2. 数据转换与过滤:通过源码可以了解Flink如何进行数据转换,如Map、Filter、KeyBy、Join等操作,以及如何实现自定义的转换函数。 3. 窗口操作:Flink支持滑动窗口、会话窗口和 tumbling 窗口等多种窗口操作,源码中可能会展示如何根据业务需求设置窗口并进行窗口聚合。 4. 事件时间和水印:源码可能包含事件时间处理的示例,展示如何定义水印策略来处理乱序事件。 5. 容错与状态管理:通过源码学习Flink的状态管理机制,了解如何保存和恢复中间状态,确保系统在故障后能够恢复。 四、数据集应用 提供的数据集可能是为了模拟真实世界的数据流,用于测试和验证Flink作业的性能和正确性。这些数据集可能涵盖各种领域,如电商交易、社交媒体数据、物联网传感器数据等。通过对这些数据集的处理,可以更好地理解Flink在实际场景中的应用。 五、学习路径 1. 阅读源码,理解每个案例的处理逻辑和实现方式。 2. 分析数据集,理解其结构和内容,根据业务需求设计合适的处理流程。 3. 编译和运行源码,观察输出结果,对比预期,调整代码以优化性能或满足新需求。 4. 尝试修改源码,实现自己的功能,例如添加新的转换操作或调整窗口策略。 通过这份“Flink案例源码和数据集.rar”,开发者不仅能掌握Flink的基础知识,还能提升解决实际问题的能力,进一步提升在大数据处理领域的专业技能。
2025-06-05 13:51:32 115KB flink 数据集
1
VisDrone数据集是视觉目标检测领域中一个广泛使用的数据集,特别针对无人机(Unmanned Aerial Vehicles, UAVs)视角的图像分析。这个数据集由一系列图像组成,包含了不同场景下的目标物体,如行人、车辆等,旨在促进无人机视觉理解和智能分析技术的研究。在给定的压缩包中,“部分visdrone数据集,含yolo格式标签”意味着它只包含了VisDrone数据集中的一部分,并且这些图像的标签是以YOLO(You Only Look Once)格式提供的。 YOLO是一种实时的目标检测算法,以其高效和准确著称。它的主要思想是将图像分割成多个网格(grid cells),每个网格负责预测其覆盖范围内的目标。YOLO标签通常包含四个数值,分别对应于目标框的中心坐标(相对于网格的相对坐标)和宽度与高度,再加上一个类别概率。这种紧凑的表示方式使得YOLO在处理大量目标时具有较高的速度优势。 VisDrone数据集的特性包括: 1. 多样性:图像来源于不同环境、天气和时间条件,涵盖城市、乡村、室内等多种场景。 2. 目标多样性:数据集中包含了多种目标类别,如行人、车辆、自行车等,模拟真实世界中的复杂情况。 3. 高精度标注:每个目标都有精确的边界框标注,确保了训练模型的准确性。 4. 大规模:尽管给出的是部分数据集,但仍然包含大量的图像和目标实例,适合深度学习模型的训练。 使用这部分VisDrone数据集,研究人员或开发者可以: 1. 训练和优化目标检测模型:由于VisDrone数据集的标注质量高,可以用来训练YOLO或其他目标检测模型,提升模型在无人机视角下的检测性能。 2. 模型泛化能力评估:通过对比完整数据集和部分数据集上的表现,可以评估模型对未见过的数据的泛化能力。 3. 实时性研究:由于数据集涉及无人机应用,所以可以研究模型在保持高精度的同时,如何实现快速响应,满足无人机实时性的需求。 4. 新方法验证:作为基准数据集,部分VisDrone数据集可以用于验证和比较新的目标检测算法或改进。 在实际应用中,这部分数据集可能适用于无人机监控、交通管理、安全防护等领域,帮助系统识别并跟踪无人机视野内的关键对象。通过深入理解和利用VisDrone数据集的特性,我们可以推动无人机视觉技术和相关领域的进步。
2025-06-05 10:04:35 78.11MB 数据集
1
# 简要介绍 Fer2013 数据集源自 Kaggle 表情识别挑战赛,该数据集包含7种不同的人脸情绪,所有图像均统一为 48×48 的像素尺寸。 # 数据规模 * 训练数据(Training):28709 张灰度图像 * 验证数据(PublicTest):3589 张灰度图 * 测试数据(PrivateTest):3589 张灰度图 # 标签介绍 数据集中的 7 种人脸情绪通过 0 - 6 的数字标签一一对应,具体如下: * 0=Angry * 1=Disgust * 2=Fear * 3=Happy * 4=Sad * 5=Surprise * 6=Neutral
2025-06-04 23:22:27 63.9MB 数据集 人脸表情识别 kaggle
1
内容概要:本文详细介绍了街景主观感知模型的训练与大规模预测方法。首先,文章阐述了街景主观感知模型的基本概念及其重要性,强调了‘beautiful’和‘safer’等主观感知维度。接着,文中提到使用自定义数据集(420张图片)进行模型训练的基础,确保数据集的质量和丰富性。然后,文章对多个深度学习模型(如ResNet50、ResNet101、EfficientNet等)进行了对比训练,记录并分析了各模型的表现。最终,通过大量训练和优化,模型在测试集上取得了0.89的高精度。此外,文章还讨论了如何利用训练好的模型进行大规模预测,为城市规划和改造提供有价值的数据支持。 适合人群:从事计算机视觉领域的研究人员和技术人员,尤其是对街景感知模型感兴趣的从业者。 使用场景及目标:适用于希望深入了解街景主观感知模型训练和预测的研究人员,旨在帮助他们掌握多模型对比的方法,提升模型精度,应用于实际的城市规划和改造项目。 其他说明:文章不仅提供了理论指导,还分享了具体的实践经验,使读者能够在实践中更好地理解和应用相关技术。
2025-06-04 22:36:40 2.26MB
1
该资源包包含用于基于HSV颜色的保险丝分类的完整Halcon例程代码和示例图像文件,代码实现了保险丝分类的具体功能,图像文件可用于代码的调试和测试。用户可以直接加载提供的资源运行代码,通过HSV颜色空间分析实现保险丝的分类功能,验证算法效果,快速掌握HSV颜色分类的实现原理与应用方法。资源完整,包含代码与图像,可直接运行,无需额外配置,非常适合学习与开发相关应用。 在当今工业自动化领域中,对零部件的快速准确分类是提高生产效率的关键环节。保险丝作为电路中的基础元件,其分类工作尤为重要。本文所述的资源包即为此类应用提供了解决方案,利用HSV颜色空间作为分类依据,采用Halcon这一机器视觉软件进行编程实现。 HSV颜色空间是基于人眼对颜色的感知方式而定义的颜色模型,其中H代表色调(Hue),S代表饱和度(Saturation),V代表亮度(Value)。与常见的RGB颜色空间相比,HSV更贴近人类对颜色的直观感受,因此在色彩相关的图像处理中应用更为广泛。 Halcon作为一套专业的机器视觉开发软件,拥有强大的图像处理功能和算法库,适用于复杂的图像分析任务。在这个资源包中,Halcon例程代码通过调用其内置的图像处理函数,将保险丝图像从RGB颜色空间转换到HSV空间,并利用HSV颜色特征实现保险丝的自动分类。 资源包提供的例程代码名为"color_fuses.hdev",是一份可以被Halcon软件直接打开和运行的脚本文件。该代码文件中包含了图像的读取、预处理、颜色空间转换、颜色区域分割、形态学操作、特征提取以及分类决策等关键步骤。开发者可以通过运行此代码,直观地观察到算法对不同颜色保险丝的分类效果,从而进行调试和参数优化。 此外,资源包还包括"技术资源分享.txt"文档,其中详细记录了例程代码的使用方法、代码段的解释以及可能遇到的问题和解决方案。这对于初学者而言,是一份宝贵的学习资料,能够帮助他们快速理解并掌握Halcon在保险丝分类中的应用。 "color"作为另一个文件列表中的条目,可能指的是资源包中包含的示例图像文件。这些图像文件可能包含了不同色调、饱和度和亮度的保险丝图像,用于验证代码的分类准确性。开发者可以使用这些图像对算法进行测试,确保算法能够在实际应用中准确识别和分类不同颜色的保险丝。 该资源包不仅提供了一套完整的Halcon分类例程代码,还包括示例图像和详细的技术文档,是学习和应用HSV颜色分类原理的宝贵资料。对于从事机器视觉、图像处理以及自动化检测的工程师或研究人员而言,这是一个难得的学习工具,能够有效地提升他们的工作效率和项目质量。
2025-06-04 20:20:41 980KB Halcon 图像数据集 图像处理
1
大理州森林碳储量空间分布及其影响因素分析数据集
2025-06-04 20:03:07 104.56MB 机器学习
1