内容概要:本文介绍了基于FPGA实现的暗通道先验实时去雾算法。首先阐述了去雾的重要性和暗通道先验的基本原理,然后详细描述了算法的具体实现步骤,包括图像输入与预处理、暗通道估计、大气透射图估计与去雾处理、图像输出等环节。文中展示了关键代码片段,并强调了FPGA在并行计算和加速图像处理方面的优势。最后,文章提到了仿真实现和硬件部署的可能性,展望了未来的优化方向。 适合人群:从事图像处理、嵌入式系统开发的研究人员和技术人员,尤其是对FPGA和去雾算法感兴趣的开发者。 使用场景及目标:适用于需要高质量图像处理的应用场景,如自动驾驶、监控系统、增强现实等。目标是提升图像清晰度,改善系统性能。 其他说明:文章附带了完整的仿真文件、课程论文和PPT,可供进一步研究和学习。
2025-11-17 16:34:27 376KB
1
基于暗通道先验的图像去雾算法是一种有效的图像恢复技术,它能够从雾化图像中去除干扰,恢复出清晰的场景。该算法的核心思想在于利用暗通道先验知识来估计图像中的透射率,并通过这一估计值来达到去除雾气的目的。在无雾图像中,暗通道通常具有很低的强度值,基于这一事实,算法提出者通过大量的无雾图像数据统计分析,发现大多数非天空的场景像素在暗通道中的值往往在[0,16]的范围之内。利用这个规律,可以推断出带有雾气的图像中的暗通道在相同的强度区间内,进而推算出透射率。 透射率的准确估计对于图像去雾的效果至关重要。算法通过构建一个透射率模型,结合原始雾化图像,可以计算得到透射图,这个透射图反映了场景中各个部分的能见度。接着,利用大气散射模型结合透射图和暗通道特征,可以对原始图像进行处理,从而得到去雾后的图像。 本文除了介绍算法的理论基础和步骤之外,还特别关注了算法的硬件实现。Verilog作为一种广泛使用的硬件描述语言,非常适合用来实现图像处理算法,尤其是在FPGA(现场可编程门阵列)这类硬件平台上。使用Verilog对图像去雾算法进行硬件描述,可以让算法在FPGA上进行实时或接近实时的图像处理,这对于需要高响应速度的图像处理应用来说非常有价值。例如,在自动驾驶车辆的视觉系统中,快速准确地处理摄像机捕捉到的图像对于安全驾驶至关重要,FPGA实现的图像去雾算法可以在这方面发挥重要作用。 在硬件实现的过程中,Modelsim作为一种仿真工具,也扮演了不可或缺的角色。它允许设计者在将Verilog代码部署到实际硬件之前对其进行测试和验证,确保算法的正确性和效率。通过Modelsim进行仿真,可以发现并修正逻辑错误,优化代码性能,从而确保在FPGA上实现时能够达到预期的效果。 基于暗通道先验的图像去雾算法不仅在理论和算法层面具有创新性,而且其在硬件层面的实现也为图像处理领域提供了新的可能性。利用Verilog将该算法部署到FPGA平台,配合Modelsim的仿真验证,该技术的应用范围和效率得到了极大的提升。
2025-11-13 16:02:25 1.38MB FPGA Modelsim Verilog
1
内容概要:本文详细介绍了基于FPGA的图像去雾算法,尤其是暗通道先验法的具体实现方法及其优势。文中首先解释了选择FPGA进行图像去雾的原因,即相比传统的软件方案(如OpenCV),FPGA能够显著提高处理速度并支持实时处理。接着,作者深入探讨了暗通道先验算法的核心思想以及如何利用Verilog语言在FPGA上实现这一算法的关键步骤,包括求解三色通道最小值、大气光估计、透射率计算等环节的技术细节。此外,还提供了完整的仿真测试流程,从生成带有特定雾度的人造图像开始,到最后将FPGA输出的数据转换为可视化的图像展示,确保整个系统的可靠性和准确性。 适合人群:对FPGA开发有一定了解,希望深入了解图像处理领域的工程师和技术爱好者。 使用场景及目标:适用于需要快速高效的图像去雾解决方案的实际应用场景,如安防监控系统、自动驾驶车辆视觉识别等。通过学习本文提供的理论知识和技术手段,可以掌握如何构建高性能的图像去雾系统。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者提前熟悉FPGA基础知识、Verilog编程语言以及基本的图像处理概念。同时,可以通过实际动手实验来加深理解,尝试复现文中提到的各种功能模块。
2025-11-13 16:00:41 1.21MB
1
基于FPGA的暗通道先验图像去雾处理算法仿真研究——使用Quartus 13.0的挑战与改进方向,基于FPGA的暗通道先验图像去雾处理算法仿真与实现挑战——浓雾与天空区域处理优化,FPGA图像增强,基于FPGA的图像去雾处理,算法为暗通道先验,并在matlab上实现了算法的仿真,使用的软件为quartus13.0。 注意在FPGA上实现时,在浓雾区域和天空区域的处理效果不算太好。 ,FPGA图像增强; 基于FPGA的图像去雾处理; 算法为暗通道先验; MATLAB仿真; Quartus13.0; 浓雾区域处理效果不佳; 天空区域处理效果不佳。,基于FPGA的图像增强与去雾处理:暗通道先验算法的优化与仿真
2025-06-27 15:38:47 1.37MB 数据仓库
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-13 10:10:25 3.51MB matlab
1
Retinex与暗通道融合的海参图像去雾方法
2024-01-11 21:51:43 904KB 研究论文
1
暗通道去雾,含有导向滤波,效果相当好,
2023-05-13 10:52:59 6KB 暗通道
1
何凯明博士2009年的论文(暗通道去雾)Single ImageHaze Removalusing Dark Channel Prior中的代码实现,可以直接运行的程序。
2023-04-17 20:09:45 9KB 暗通道 去雾
1
行人检测是实现智能交通与客流监控的关键技术,深度学习方法训练模型已经在行人检测领域取得了良好的效果。但是当训练样本质量不佳时,训练的模型往往不能得到令人满意的效果。为了提高雾霾天气与曝光较强环境下的行人检测效果,提出了将暗通道去雾算法应用于深度学习的样本预处理中,并使用快速深度卷积神经网络训练行人检测模型。在实验中,首先对10000张样本图片采用暗通道去雾算法进行预处理,之后分别使用有无暗通道去雾算法预处理的样本图片训练模型,最后比较这两种模型在不同场景下的模型检测准确率。实验结果表明,使用暗通道去雾预处理后的样本训练得到的深度模型具有更好的检测效果,在多种场景下的检测率都得到提升。
2023-04-11 18:37:15 11.81MB 图像处理 行人检测 暗通道去 深度学习
1
Image Processing Author:zhiyu-Lin Date:2018-7-25 E-mail: Description: 数字媒体课程大作业,用django实现交互界面 环境 python>=3.5 django==2.0.4 opencv-python==3.4.0.12 numpy==1.13.1 PIL==4.2.1 pip install -r requirements.txt 实现功能 改变图像对比度、饱和度、亮度-opencv库辅助完成 图像接缝裁剪-seam carving算法实现 图片去雾-暗通道去雾算法 运行 #命令行输入 python manage.py runserver 0.0.0.0:8000 #在浏览器输入 localhost:8000/hello 结果 通过滑动条来调节图片对比度、亮度和饱和度,三种效果可重复叠加。 在size输入框中输入裁剪
2023-03-16 20:13:22 13.77MB JavaScript
1