智能车在决策与轨迹规划过程中使用的静态和动态风险场模型。静态风险场模型主要考虑车辆外形及其固有属性,采用椭圆模型来模拟车辆轮廓的风险,并通过MATLAB代码实现了椭圆参数随车辆尺寸动态变化的功能。动态风险场模型则关注主车和障碍车之间的相对速度、距离及方向等因素,利用相对速度计算模块进行实时评估。两者结合可以有效预测潜在碰撞风险,优化轨迹规划。文中还展示了将这两种风险场模型应用于实际场景的具体方法,如通过调整敏感度系数使规划路径更贴近人类驾驶习惯。 适合人群:对智能车技术感兴趣的科研人员、工程师及高校相关专业师生。 使用场景及目标:适用于智能车的研发阶段,特别是涉及决策算法和轨迹规划的部分。目的是提高智能车的安全性和智能化水平,使其能够更好地应对复杂交通环境。 其他说明:文章提供了详细的MATLAB代码示例,便于读者理解和实践。同时强调了可视化工具对于模型调试的重要性。
2025-10-20 16:44:21 717KB
1
系统功能及应用  本系统主要完成将智能车行驶过程中的各种状态信息(如传感器亮灭,车速,舵机转角,电池电量等)实时地以无线串行通信方式发送至上位机处理,并绘制各部分状态值关于时间的曲线。有了这些曲线就不难看出智能车在赛道各个位置的状态,各种控制参数的优劣便一目了然了。尤为重要的是对于电机控制PID参数的选取,通过速度一时间曲线可以很容易发现各套PID参数之间的差异。对于采用CCD传感器的队伍来说,该系统便成为了调试者的眼睛,可以见智能车之所见,相信对编写循线算法有很大帮助。而且还可以对这些数据作进一步处理,例如求取一阶导数,以得到更多的信息。 系统的硬、软件设计  设计方案主要分成三部分:车载数 电子测量中的智能车运动状态实时监测系统是一种先进的技术,它能实时收集并分析智能车在比赛过程中的多种关键状态信息,以辅助优化车辆性能和控制策略。系统的主要功能包括: 1. 实时数据采集:系统能够捕捉到智能车的速度、传感器状态(如亮灭)、电池电量、舵机转角等关键参数,这些数据通过无线串行通信方式实时发送到上位机。 2. 数据无线传输:采用无线数传系统,以每20毫秒为周期发送一组包含速度、电池电压、舵机转角和传感器状态的数据。在无线传输中,为防止数据丢失,加入了数据校验机制,如帧头0x00,0xff,一旦检测到错误则丢弃该帧数据。 3. 上位机数据处理:上位机通过串口接收下位机发送的数据,采用VC++的MSComm控件进行串口通信。数据接收后,被存储到临时文件,并可根据用户需求保存到指定文件。此外,系统提供数据处理模块,用于分析原始数据,剔除错误数据,并将数据装入对应数组。用户还可以对已保存的数据进行再分析。 4. 图形化展示:系统具备强大的图形显示模块,可以绘制各状态值随时间变化的曲线,帮助用户直观理解智能车在不同赛道位置的状态,以及控制参数的效果。比如,通过速度-时间曲线可以评估PID参数的优劣,这对于电机控制的调整至关重要。对于采用CCD传感器的智能车,该系统如同调试者的"眼睛",有助于循线算法的优化。 5. 硬、软件设计:系统硬件分为车载数据采集系统、无线数传系统和上位机数据处理系统。车载数据采集系统使用ATMEGA16单片机,负责收集各类传感器信号,而无线数传模块如SUNRAY的QC96型,确保数据的无线传输。上位机软件采用VC++开发,实现了数据接收、存储、处理和图形化显示等功能。 该系统在电子测量领域具有重要意义,不仅提高了智能车的调试效率,还为赛道记忆算法的研究提供了强有力的支持。通过实时监测和分析,可以更精准地调整PID参数,优化车辆性能,确保智能车在比赛中展现出最佳状态。
2025-10-13 18:29:37 103KB 电子测量
1
系统功能及应用  本系统主要完成将智能车行驶过程中的各种状态信息(如传感器亮灭,车速,舵机转角,电池电量等)实时地以无线串行通信方式发送至上位机处理,并绘制各部分状态值关于时间的曲线。有了这些曲线就不难看出智能车在赛道各个位置的状态,各种控制参数的优劣便一目了然了。尤为重要的是对于电机控制PID参数的选取,通过速度一时间曲线可以很容易发现各套PID参数之间的差异。对于采用CCD传感器的队伍来说,该系统便成为了调试者的眼睛,可以见智能车之所见,相信对编写循线算法有很大帮助。而且还可以对这些数据作进一步处理,例如求取一阶导数,以得到更多的信息。 系统的硬、软件设计  设计方案主要分成三部分:车载数
2025-10-13 18:23:09 138KB
1
在智能车竞赛领域,独轮信标组一直是一个备受瞩目的项目。其竞赛不仅考验参赛者的机器人控制技术,也挑战他们对电子硬件、软件编程以及物理设计的理解与应用。对于新加入的参赛者而言,充分理解比赛的规则、技术要求以及各类硬件和软件工具是极为重要的基础。在第二十届智能车竞赛中,独轮信标组的比赛规则和技术规格发生了较大变化,因此对于参赛者来说,了解并适应这些变化至关重要。 龙邱科技的工程师们,凭借对智能车大赛的深刻理解,为参赛者提供了一份详尽的方案分享手册。手册内容全面,从独轮信标组的基本规则、技术要求到硬件清单、开发工具,再到通用控制算法以及赛项分享和备赛建议,一步一步引导新手逐渐深入智能车的奇妙世界。手册明确指出了赛项的基本要求,如规则简介、独轮信标比赛细则和信标系统技术规格,确保参赛者能够全面掌握比赛的每项要求。 在硬件清单部分,手册详细列出了参与独轮信标组比赛所需的所有硬件组件,帮助参赛者快速建立起所需的硬件平台。在开发工具部分,则介绍了实现控制算法和调车程序的软件环境,强调了正确的工具使用对于高效开发和调试的重要性。 控制算法部分是整个手册的核心,它不仅介绍了常用的控制算法,还分享了龙邱科技团队在调试独轮信标车时积累的心得。这里的心得是宝贵的,因为它源于实战经验,能够让参赛者站在巨人的肩膀上,更快地找到正确的方向,避免走弯路。同时,这一部分也为有志于深入研究控制理论的参赛者提供了理论与实践相结合的案例。 备赛建议与资源推荐部分为参赛者提供了一些实用的建议,比如如何安排训练计划、怎样寻找和利用比赛资源等。这些建议是经过多个团队实践检验过的,非常具有操作性。此外,手册中还包含了一些联系方式,方便参赛者在比赛中遇到技术难题时能够找到相应的技术支持或进行交流。 这份方案分享手册不仅是一份知识指南,更是一种精神传承。它传递了龙邱科技对于智能车大赛的热爱和对参赛者的支持。通过这份手册,参赛者可以更好地理解比赛、提高技能,最终在赛场上展现出自己的最佳水平。这份手册无论对于初学者还是有经验的参赛者来说,都是一份不可多得的宝贵资料。
2025-09-14 11:57:30 5.25MB
1
第20届智能车竞赛技术报告:独轮信标
2025-09-11 10:03:11 412.18MB 技术报告
1
**内容概要**:本资源包提供了全国大学生智能汽车竞赛完全模型组(Edgeboard-FZ3B)的开源共享软件资源。该资源包包括智能车控制系统的完整源码、详细的算法设计文档、部署和调试指南、以及相关讲解。主要内容涵盖智能车路径规划、传感器数据处理、车速控制、障碍物检测与避让等核心技术。 **适合人群**:参加全国大学生智能汽车竞赛的学生、对智能车及自动驾驶技术感兴趣的开发者。 **能学到什么**: 1. 掌握智能车控制系统的设计与实现方法。 2. 学习路径规划算法及其在智能车中的应用。 3. 了解传感器数据处理技术,包括数据采集、滤波、融合等。 4. 掌握车速控制算法,实现平稳加速和减速。 5. 学习障碍物检测与避让技术,提高智能车的安全性能。 6. 提升在Edgeboard-FZ3B平台上进行智能车开发和调试的实际能力。 **阅读建议**:建议读者先学习智能车相关的基础知识,了解路径规划、传感器数据处理、车速控制等基本概念。然后,阅读项目提供的算法设计文档,了解智能车控制系统的整体设计思路和核心算法。接着,详细阅读源码和部署指南,学习每个功能模块的具体实现和代码逻辑。通过部署和
2025-08-17 17:29:05 34.13MB 人工智能
1
标题中提到的是关于本科阶段最后一次竞赛Vlog的内容,这是关于2024年智能车大赛智慧医疗组的准备过程。从这个标题中,我们可以了解到这次竞赛与智慧医疗相关,并且有一个特殊的组成部分,那就是9二维码识别。这部分内容很可能是竞赛中的一个关键环节,也可能是一个附加的技术挑战。 描述中几乎重复了标题的内容,表明了这次竞赛Vlog的主线是关于2024年智能车大赛智慧医疗组的准备全过程,并且在这一过程中,对9二维码识别的应用给予了特别的关注。Vlog作为一种视频日志的形式,能够以第一人称的视角记录和分享比赛准备的点点滴滴,让观众能够更直观地了解比赛背后的故事和挑战。 标签为"模型",这个标签可能指的是在竞赛中所使用到的技术模型,比如用于二维码识别的图像处理或机器学习模型。也有可能指的是在整个竞赛准备过程中建立的项目或系统模型。此外,模型在这里也可能是指竞赛的组织架构或是准备过程中的某种标准化流程。 文件名称列表中只给出了一个词:"9附件"。由于信息量较少,我们只能推测这可能是指与Vlog相关的辅助资料或补充材料,这些附件可能是图像、视频、代码片段、设计图纸、数据分析报告等,用以支持Vlog内容的制作和理解。 综合以上信息,我们可以推断出这是一份记录了一次技术竞赛准备过程的详细记录。这次竞赛不仅包含了技术挑战,还有可能涉及医疗健康、人工智能、机器视觉等多个前沿领域的知识。参与者需要在有限的时间内准备相应的技术方案和模型,以应对竞赛中可能出现的各种问题和挑战,包括对二维码识别技术的应用。整个准备过程充满了技术和创新的挑战,同时也是一次宝贵的学习和成长经历。
2025-07-18 20:55:06 887KB
1
无线充电技术LCC-S仿真模型研究:基于Simulink的20届智能车竞赛微缩电磁组项目,《LCC-S无线充电的Simulink仿真模型研究与开发》,无线充电LCC-S仿真,Simulink仿真模型 适用于第二十届智能车竞赛微缩电磁组无线充电,科研,项目等。 输入48V,输出1000W-10欧,负载为电阻,实际中更为法拉电容功率仍可获得近似效果 参数已设计好,效率78% 可修改参数 版本Matlab2023b ,无线充电; LCC-S仿真; Simulink仿真模型; 微缩电磁组无线充电; 科研项目; 参数设计; 效率78%; 版本Matlab2023b,无线充电LCC-S仿真模型:Simulink项目实践与参数调整
2025-07-17 21:50:33 2.19MB edge
1
全国大学生智能车竞赛是中国高等教育学会发起的一项全国性赛事,旨在提升大学生工程实践能力和科技创新意识。智能车竞赛中的充电模块是决定车辆续航能力的关键部件,其技术报告主要描述了各参赛队伍在无线充电技术方面的研究与实践成果。 常熟理工学院的无线充电组在昆承湖二队的技术报告中详细阐述了他们的无线充电设计,这包括了电力传输、接收与转换等关键环节的设计思路与实现方法。东南大学SEU三轮飞车队的报告中,对于无线充电技术在高速运动中的应用提供了独到见解,体现了他们在无线充电技术方面的深厚积累和创新能力。 国防科技大学作为我国军事科技的重要基地,其无线充电技术报告反映出了尖端科技在民用领域如智能车竞赛中的应用,报告中所展示的技术方案和实验结果无疑对推动无线充电技术的发展具有重要意义。华中科技大学的无线充电组在技术报告中可能着重讨论了充电效率与安全性的平衡问题,这对于竞赛中的实用性和竞技表现具有双重影响。 北京科技大学的参赛队伍在无线充电组的技术报告中可能探讨了新型材料的应用,这或许能够提升无线充电系统的性能。大连理工大学在他们的技术报告中强调了无线充电技术在极端环境下的稳定性和可靠性,这说明他们对无线充电模块在复杂条件下的应用有深入研究。 广州软件学院作为参赛队伍之一,其报告可能会展示他们在无线充电技术与软件控制相结合上的创新,这对于智能车的性能优化有着直接的帮助。武汉大学的技术报告中可能会涉及智能车无线充电模块的优化策略,以及如何在保证充电效率的同时降低能耗。 南京邮电大学的无线充电组技术报告中,或许会围绕通信与充电系统的协同工作展开讨论,这对于智能车系统的集成和性能提升至关重要。哈尔滨工业大学(深圳)的南工绝影5队在无线充电组的技术报告中,可能展示了他们独特的无线充电解决方案和在竞赛中的应用效果。 整体来看,这些技术报告不仅是参赛队伍智慧的结晶,也是无线充电技术在实际应用中不断探索和完善的记录。通过这些报告,可以发现当前无线充电技术在智能车竞赛中的应用趋势,如模块化设计、高效率转换、稳定性和安全性等,这些都是未来无线充电技术发展的重要方向。同时,这些报告对于高校师生、科研人员以及相关产业的技术人员而言,都具有很高的参考价值和启发作用。
2025-07-15 15:45:03 87.35MB 竞赛报告
1
全国大学生电子设计大赛应该准备哪些模块? 主要可以针对以下几类准备模块:电源类、信号源类、无线电类、放大器类、仪器仪表类、控制类 。
1