本文提出一种名为IOPLIN的深度学习框架,用于自动检测多种路面病害。该方法通过迭代优化补丁标签推断网络,仅需图像级标签即可实现高精度检测,并能粗略定位病害区域。创新的EMIPLD策略解决了无局部标注的难题,结合CLAHE预处理与EfficientNet骨干网络,充分挖掘高分辨率图像信息。研究团队构建了含6万张图像的大规模数据集CQU-BPDD,涵盖七类病害,推动领域发展。实验表明,IOPLIN在AUC、精确率与召回率上均优于主流CNN模型,尤其在高召回场景下优势显著。其具备强鲁棒性与跨数据集泛化能力,适用于真实复杂路况。该技术可用于路面筛查与病害定位,大幅降低人工成本,助力智慧交通运维。代码与数据集已公开,促进学术共享。
2025-10-29 17:39:42 10.97MB 路面检测 AI 计算机视觉
1
“基于YOLO V8的金属表面缺陷检测识别系统——从源代码到实际应用的完整解决方案”,"基于YOLO V8的金属表面缺陷智能检测与识别系统:Python源码、Pyqt5界面、数据集与训练代码的集成应用报告及视频演示",基于YOLO V8的金属表面缺陷检测检测识别系统【python源码+Pyqt5界面+数据集+训练代码】 有报告哟 视频演示: 金属表面缺陷的及时检测对于保障产品质量和生产安全至关重要。 然而,传统的人工检测方法往往效率低下、耗时长,并且容易受主观因素影响。 为了解决这一问题,我们提出了基于深度学习技术的金属表面缺陷检测系统。 本项目采用了Yolov8算法,这是一种高效的目标检测算法,能够在图像中快速准确地检测出各种目标。 我们将其应用于金属表面缺陷的检测,旨在实现对金属表面缺陷的自动化检测和识别。 数据集的选择是本项目成功的关键之一。 我们收集了大量金属表面缺陷图像,这些数据为模型的训练提供了充分的支持,确保了模型在各种情况下的准确性和稳定性。 在训练过程中,我们采用了迁移学习的方法,利用预训练的Yolov8模型,并结合我们的金属表面缺陷数据集进行了进一步的微调和优化。
2025-10-28 12:51:55 2.27MB
1
内容概要:本文详细介绍了基于YOLOv8和PyQt5构建的金属表面缺陷检测系统的开发过程和技术细节。首先阐述了YOLOv8作为缺陷检测工具的优势及其改进之处,如对小目标检测精度的提高和对反光表面的良好适应性。接着描述了数据集的准备和增强方法,包括随机旋转、亮度对比度变化以及自适应anchor策略等。然后讲解了模型训练过程中的一些调参技巧,如冻结部分层加速收敛、使用AdamW优化器防止过拟合等。对于界面设计方面,则利用PyQt5创建了一个友好且高效的用户交互界面,支持实时图像处理和参数调整。此外,还讨论了产线部署时遇到的问题及解决方案,如模型轻量化、帧采样策略应对视频流处理等。最后分享了一些实际应用案例,展示了该系统在提高检测效率和减少漏检方面的卓越表现。 适合人群:具有一定机器学习基础并希望深入了解YOLO系列算法应用于工业领域的开发者、研究人员。 使用场景及目标:适用于金属加工制造业的质量控制环节,旨在替代传统的人工目视检查方式,提供更加高效准确的自动化检测手段。 其他说明:文中提供了完整的Python源码片段,涵盖从模型加载、预测到界面展示等多个方面,便于读者快速理解和复现整个流程。
2025-10-09 21:58:15 2.47MB
1
内容概要:本文深入介绍了VisionPro涂胶检测工具,这是一种基于ToolBlock技术的高效智能检测工具。它能够在图像上沿路径画点后自动生成卡尺,进行精确测量和检测。该工具不仅能在一定程度上容忍误判(仅当连续N个不合格时才判定为不合格),还可以灵活设置卡尺尺寸和参数,输出详细的检测结果和最大最小宽度数据。这些特性使得VisionPro成为提升生产线效率和保障产品质量的重要工具。 适合人群:从事工业制造、质量检测的技术人员以及相关管理人员。 使用场景及目标:适用于需要高精度涂胶检测的生产线,旨在提高检测效率和准确性,降低误判率,优化生产流程。 其他说明:VisionPro涂胶检测工具通过其独特的ToolBlock技术和智能化检测手段,在工业视觉检测领域展现出显著优势。未来还将继续探索更多先进的视觉检测工具及其应用。
2025-09-10 16:19:58 2.39MB
1
基于YOLOV8的智能道路缺陷检测系统:实现裂缝、交通设施及坑槽洼地的高效识别,创新点融合PyQt界面优化UI体验,支持图像视频输入直接获取检测结果。,基于YOLOV8算法的道路缺陷智能检测系统:实现裂缝、交通设施及坑槽洼地精准识别,创新点融合PyQt界面与UI操作体验优化,基于YOLOV8道路缺陷检测,系列实现道路场景的裂缝、交通设施、坑槽洼地等区域的检测, pyqt界面+创新点 UI界面,支持图像视频输入直接获取结果 ,基于YOLOV8; 道路缺陷检测; 裂缝检测; 交通设施检测; 坑槽洼地检测; pyqt界面; 创新点; UI界面; 图像视频输入,基于YOLOV8的智能道路场景检测系统:UI界面加持的检测方案与创新点
2025-05-11 15:27:52 342KB xhtml
1
基于YOLOv8算法的轨道异物智能检测系统:含数据集、模型训练与可视化展示的全面解决方案,基于YOLOv8算法的轨道异物智能检测系统:含模型训练与评估、可视化展示及pyqt5界面设计指南,十四、基于YOLOv8的轨道异物检测系统 1.带标签数据集,100张图片。 2.含模型训练权重和指标可视化展示,f1曲线,准确率,召回率,损失曲线,混淆矩阵等。 3.pyqt5设计的界面。 4.提供详细的环境部署说明和算法原理介绍。 ,YOLOv8; 轨道异物检测; 带标签数据集; 模型训练; 权重; 指标可视化; f1曲线; 准确率; 召回率; 损失曲线; 混淆矩阵; pyqt5界面设计; 环境部署说明; 算法原理介绍。,基于YOLOv8的轨道异物智能检测系统:模型训练与可视化展示
2025-04-24 09:49:33 1.31MB
1
内容概要:本文详细介绍了如何利用YOLOv8构建一个用于公共场所的危险物品检测系统。该系统不仅能够识别如手枪和刀具等危险物品,还能区分手机、钱包等日常用品。文中涵盖了数据集准备、模型训练、结果验证以及图形界面开发等多个方面。针对数据集的特点,作者提出了多种改进措施,如使用LabelImg工具复查标注质量、调整YOLOv8的anchor设置以适应不同大小的目标物体、采用mixup数据增强方式提高模型泛化能力等。为了确保系统的稳定性和实用性,作者还分享了一些实用技巧,例如通过PyQt6创建友好的用户界面,处理OpenCV与QT之间的色彩空间转换问题,以及利用多线程技术优化实时检测性能。 适合人群:有一定深度学习基础并希望深入了解目标检测领域的研究人员和技术爱好者。 使用场景及目标:适用于机场、车站等人流量较大的公共场合的安全监控,旨在及时发现潜在威胁并发出预警,保障公众安全。 其他说明:文中提供了完整的代码片段供读者参考学习,包括但不限于数据预处理、模型训练配置、检测结果展示等方面的内容。此外,作者还分享了许多实践经验,帮助读者更好地理解和应用相关技术。
2025-04-19 12:35:26 621KB
1
基于YOLOv8算法的车道线智能检测与识别系统:含标签数据集、模型训练及可视化指标的全面解析,十、基于YOLOv8的车道线智能检测与识别系统 1.带标签数据集,BDD100K。 2.含模型训练权重和可视化指标,包括F1,准确率,召回率,mAP等。 3.pyqt5设计的界面。 4.提供详细的环境部署说明和算法原理介绍。 ,基于YOLOv8;车道线智能检测;BDD100K带标签数据集;模型训练权重;可视化指标;pyqt5界面设计;环境部署说明;算法原理介绍。,基于YOLOv8的智能车道线检测与识别系统:含标签数据集及高效模型训练
2025-04-02 02:54:36 1.24MB
1
适合再次领域内研究的初学者,内含数据集和算法
2022-12-23 11:26:23 5.63MB 深度学习 机器学习
WebShell是网络入侵的常用工具,具有威害性大、隐蔽性好等特点。目前的检测手段较简单,容易被绕过,难以对付复杂灵活的 WebShell。针对这些问题,提出一种智能检测 WebShell 的机器学习算法,通过对已知存在WebShell和不存在WebShell的页面进行特征学习,完成对未知页面的预测,灵活性、适应性较好。实验证明,相比传统的WebShell检测方法,该算法的检测效率、正确率更高,同时也能以一定概率检测出新型的WebShell。
2022-12-14 21:37:36 670KB WebShell检测 矩阵分解 特征训练
1