上传者: 38551143
|
上传时间: 2022-12-14 21:37:36
|
文件大小: 670KB
|
文件类型: PDF
WebShell是网络入侵的常用工具,具有威害性大、隐蔽性好等特点。目前的检测手段较简单,容易被绕过,难以对付复杂灵活的 WebShell。针对这些问题,提出一种智能检测 WebShell 的机器学习算法,通过对已知存在WebShell和不存在WebShell的页面进行特征学习,完成对未知页面的预测,灵活性、适应性较好。实验证明,相比传统的WebShell检测方法,该算法的检测效率、正确率更高,同时也能以一定概率检测出新型的WebShell。