多阶1/4波长滤波器理论为宽带定向耦合器的研究提供了依据,利用该方法设计了应用频段为2~6 GHz的多节3 dB的交错耦合带状线定向耦合器,并利用电磁仿真软件HFSS进行仿真。仿真结果表明,该带状线耦合器具有良好的方向性、较高的耦合度和较低的插损,从而为这类宽带强耦合度耦合器的研究提供了一定的参考价值。
2025-08-04 15:30:42 274KB 无线电电子学
1
内容概要:本文档为《IC-705_Service_2021(errata).pdf》,是针对IC-705系列无线电设备的服务手册增补文件,发布于2021年5月。文档详细列出了不同版本的修订内容,包括规格参数、备件单元、机械部件、电路板布局、布线图、原理图以及推荐的备用零件。文档还提供了各版本型号的功能特性对比表,如频率覆盖范围、操作模式、内存通道数量、无线局域网标准及蓝牙配置等。此外,文档对部分关键性能指标进行了更新,如音频输出功率、RIT可变范围、噪声抑制等。 适用人群:适用于IC-705系列无线电设备的使用者、维修技术人员及售后服务人员。 使用场景及目标:①帮助用户了解IC-705系列设备的不同版本之间的差异;②为技术人员提供详细的硬件信息以便进行维护和修理;③指导用户正确选择和订购所需的备件。 其他说明:此增补文件应与原服务手册一起使用,确保所有修订内容被正确应用。用户在查阅时应注意版本号和修订标记,以获取最新最准确的技术资料。
1
【成文时间】: 2001 【阅读语言】:中文 【页数】: 285 【作者】: 杨小牛 【文件格式】: PDF 【资料原名】:软件无线电原理与应用 【推荐点评】:比较好的一本书 【摘要目录】:第一章 概述 第二章 软件无线电基础 第三章 软件无线电数学模型 第四章 软件无线电的硬件实现 第五章 软件无线电的信号处理算法 第六章 软件无线电的智能天线实现 第七章 软件无线电在电子系统中的应用 《软件无线电原理与应用》是杨小牛编著的一部关于软件无线电技术的专业书籍。软件无线电是一种通信技术,它将天线接收的模拟信号尽可能地用数字信号处理来代替,这样可以利用软件实现无线通信的功能,比如调制解调、信号编解码等。本书深入探讨了软件无线电的理论基础、数学模型、硬件实现、信号处理算法、智能天线技术以及在电子系统中的应用。书中内容广泛,覆盖了软件无线电的多个方面,对于希望深入了解此技术的读者来说,是非常好的学习资源。 第一章概述了软件无线电的基本概念,提出了软件无线电相较于传统无线电通信的优势,以及其在现代通信系统中的重要性和应用前景。作者介绍了软件无线电的定义及其演变历程,为读者提供了软件无线电技术发展的宏观图景。 第二章探讨了软件无线电的基础知识,包括软件无线电的技术体系结构、硬件平台、软件组件等。这部分内容着重介绍了软件无线电在设计和开发过程中所需要考虑的关键技术问题,以及如何将传统无线电的硬件功能软件化。 第三章讨论了软件无线电的数学模型。数学模型是分析和设计软件无线电系统的基础。作者在这一章节中可能详细讲解了信号处理中涉及的数学工具和算法,如傅里叶变换、小波变换、滤波器设计等,为后续章节的信号处理算法奠定理论基础。 第四章讲述软件无线电的硬件实现。硬件是软件无线电能够实现的基础,本章可能涉及了如何用通用硬件平台实现软件无线电系统的详细方案。这包括了数字信号处理器(DSP)、现场可编程门阵列(FPGA)、通用处理器(GPU)等在软件无线电中的应用。 第五章阐述了软件无线电中的信号处理算法。信号处理是软件无线电的核心,本章深入解析了各种信号处理方法,例如信号的采集、变换、滤波、解调等。这些算法对于提升无线通信的质量和效率有着重要作用。 第六章探讨了软件无线电中的智能天线实现。智能天线是一种先进的天线技术,通过软件控制波束形成和信号的定向传输,提高了无线通信的性能。本章可能解释了智能天线的工作原理、设计方法和应用案例。 第七章着眼于软件无线电在电子系统中的应用。这一章节将软件无线电技术与其他电子系统结合,说明如何在不同领域中发挥软件无线电的优势。可能包括但不限于移动通信、军事通信、卫星通信等方面的应用实例。 书中内容除了理论知识,还可能包含大量的实例和案例分析,帮助读者更好地理解和掌握软件无线电技术。尽管由于OCR技术的限制,文档部分文字可能存在识别错误,但这些内容的主干和核心知识点应该是准确无误的。 《软件无线电原理与应用》这本书为广大读者提供了一个全面了解软件无线电技术的平台,不仅涵盖了基础理论,还包括硬件实现、信号处理、智能天线以及实际应用等多方面的内容,是学习和研究软件无线电不可或缺的参考资料。
2025-07-31 11:01:42 7.05MB 软件无线电
1
GNURadio是一个广泛使用的开源软件,它允许用户通过使用图形化编程设计,来创建通信系统和信号处理的原型。其运行环境多种多样,包括常见的Unix/Linux、Mac OS以及本例中的Windows平台。随着3.7.11版本的推出,它为软件无线电领域带来了新的工具和改进。 在软件无线电领域中,GNURadio支持开发者通过其强大的模块化处理库来进行复杂的设计,为各种硬件平台提供支持,尤其是如USRP(通用软件无线电外设)和HackRF一类的软件定义无线电(SDR)设备。这意味着开发者可以将抽象的算法转化为实时的信号处理能力。 GNURadio的安装过程在不同平台上有不同的要求。对于Windows平台来说,通常会提供一个安装包,如本例中的“gnuradio_3.7.11_iiosupport_win64.msi”,这是一个Windows安装程序,它允许用户执行一系列步骤来完成软件的安装过程。安装完成后,用户能够访问到一个包括许多预先构建模块的库,这些模块可以被组合起来创建用户定义的信号处理流程。 在实际应用中,GNURadio的一个关键优势在于其信号的可视化功能。它能够显示信号的波形、频谱以及瀑布图,这些功能对于调试和分析信号至关重要。信号波形图显示信号随时间变化的幅度,而频谱图则展示了信号在频率域内的分布情况,瀑布图则是一种时间-频率的图形表示,它可以追踪信号在一段时间内的变化。 软件无线电的概念是指利用软件来定义无线电的许多方面,例如频率、带宽、调制解调方式等,而不需要传统的硬件。这样的设计极大地提升了灵活性和可编程性,允许快速地更新和配置以适应不同的需求和标准。此外,这种设计也使得信号的仿真变得可能,允许开发者在没有实体硬件的情况下测试算法和系统设计。 在Windows平台上使用GNURadio,用户可以期望得到与Unix/Linux类似的功能和性能,尽管在某些方面,如驱动支持和兼容性问题可能会有所不同。然而,由于Windows的普及性,为该平台提供良好的支持对于扩大GNURadio的用户基础至关重要。这种跨平台的支持也鼓励了更多非专业人士参与到无线电通信技术的实践中来。 GNURadio的社区支持非常活跃,经常会有新的模块被添加进库中,这意味着用户总是可以访问到最新的功能和改进。社区还提供大量的文档和教程,帮助用户学习如何使用该软件,以及如何利用它进行更深入的无线电通信研究。 GNURadio在软件无线电领域内的地位是不可动摇的,它的跨平台特性、强大的可视化功能和丰富的社区资源,使得它成为任何对无线电通信和信号处理感兴趣的开发者不可或缺的工具。随着无线通信技术的不断发展,GNURadio将继续作为一个基石,支撑着新的研究和开发工作。
2025-07-23 16:43:15 267.73MB GNURadio 软件无线电
1
内容概要:本文档是《国际民用航空公约附件10:航空电信》的第一卷第八版(2023年7月),第1-3章,中文翻译版,涵盖了无线电导航设备的标准和建议措施。主要内容包括定义、无线电导航设备的一般规定、具体设备的技术规范。 适合人群:航空业从业人员,特别是从事航空电信、导航设备设计、安装、维护的专业人士,以及相关领域的研究人员和政策制定者。 国际民航组织附件10第八版涵盖了无线电导航设备的标准与规范,是全球民航领域非常重要的技术文件之一。本文档提供了关于无线电导航设备的详细规范和操作建议,具体内容涉及广泛的定义、无线电导航设备的一般规定以及特定设备的技术规格。 文档的第一章节为“定义”,这一部分主要界定了与无线电导航相关的专业术语和概念,为阅读者提供了准确理解后续内容的基础。这一章节的内容对于航空业内人员来说至关重要,因为准确的术语使用是沟通和操作的基石。 紧接着第二章节为“无线电导航设备一般规定”,这里规范了无线电导航设备的共通性原则和操作要求。在这一章节中,明确了包括标准无线电导航设备的性能要求、地面和飞行测试的标准、服务运行状态信息的提供方式、导航设备和通信系统的电源要求,以及在设计和操作中应考虑的人为因素等。这些规定不仅确保了设备操作的安全性,同时也为设备的维护和管理提供了标准。 第三章节则具体到了“无线电导航设备规范”,这一章节详细描述了各种无线电导航设备的技术要求,包括仪表着陆系统(ILS)、精密进近雷达系统、甚高频全向信标(VOR)、无方向性信标(NDB)、超高频距离测量设备(DME)和航路甚高频指点标(75 MHz)等设备的规范。每个设备的规范包括了其工作原理、技术规格、性能要求以及测试和校验方法。这些规范对于确保全球航空导航设备的兼容性和互操作性至关重要,是保障飞行安全的关键因素。 本文档特别适合于航空业从业人士,尤其是那些专注于航空电信、导航设备设计、安装及维护的专业人员。此外,对于从事航空政策制定、法规制定以及相关研究工作的人员来说,也是必不可少的参考资料。掌握这些标准与规范,有助于提高设备的性能,确保飞行过程中的安全性和效率。 作为航空电信领域的重要参考资料,本文档对于维护全球民航的通信和导航系统的高效运行具有指导意义。附件10的标准化工作确保了不同国家和地区的航空通信和导航设备可以在国际范围内协同工作,支持着全球航空网络的安全、顺畅和高效运行。
2025-07-07 13:13:34 144KB 航空电信 全球导航卫星系统
1
软件无线电原理与应用-杨小牛 软件无线电的原理及应用
2025-06-08 22:08:00 6.49MB 软件无线电
1
《 软件无线电 》实验报告 一、基于XSRP的CDMA通信系统设计 二、基于XSRP的OFDM通信系统设计 三、基于XSRP的TD-LTE物理层链路协议实现 (1)初步掌握典型无线通信系统的系统构成、应用场景、关键技术及主要参数,结合资料查询,能对相关通信工程问题进行分析并得出有效结论。 (2)根据通信系统的技术要求,能应用XSRP软件无线电平台、Labview和Matlab软件设计合适的系统结构和功能单元,并选择合适算法编写应用程序。 (3)理解掌握软件无线电通信系统的基本原理和关键技术,能设计实验方案,构建实验系统,规范地进行实验并获取数据,正确分析和解释实验结果。 (4)能在通信系统的设计、调试和测试过程中有效利用相关仪器、计算机等现代工具进行模拟、测试、分析、性能评估,并理解其中存在的局限性。 ### 一、基于XSRP的CDMA通信系统设计 #### 1.1 系统设计原理 在基于XSRP的CDMA通信系统设计中,重点在于理解并实现3GPP定义的WCDMA系统物理层处理流程。具体而言,整个设计遵循WCDMA系统物理层标准,但在某些细节上进行了适当调整以适应XSRP平台的硬件资源限制。例如,可能会对部分参数进行调整或简化某些处理步骤。 **系统架构概述:** - **信源编码**:将原始信息转化为适合传输的形式。 - **传输信道编码**:添加错误校正码,提高数据传输可靠性。 - **添加CRC比特**:用于接收端的数据完整性检查。 - **交织**:用于分散突发错误的影响。 - **扩频**:使用伪随机序列对数据进行扩展,增加抗干扰能力。 - **加扰**:通过对信号进行特定的变换来减少码间干扰和多径效应的影响。 - **物理信道映射**:将处理后的数据映射到物理信道上。 #### 1.2 系统功能验证 在功能验证阶段,需要通过实际操作来确保系统按照预期工作。这包括以下几个关键步骤: - **连接设备**:确保XSRP设备与PC之间的USB和网络连接正常。 - **配置IP地址**:设置PC和XSRP设备的IP地址,以便进行数据传输。 - **硬件初始化**:接通电源并等待设备启动完成。 - **运行实验程序**:使用Labview打开实验程序,如CDMA_Tx_Main.vi,观察并记录输出结果。 ### 二、基于XSRP的OFDM通信系统设计 #### 2.1 系统设计原理 OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)是一种高效的数字调制技术,被广泛应用于现代通信系统中。基于XSRP平台的OFDM通信系统设计,重点在于理解并实现OFDM的关键技术,如子载波分配、保护间隔插入、循环前缀等。 **系统架构概述:** - **FFT/IFFT**:使用快速傅里叶变换(FFT)和逆快速傅里叶变换(IFFT)来进行数据的频率域处理。 - **保护间隔**:在每个符号之间插入一段保护时间,以消除符号间的干扰。 - **循环前缀**:将一部分数据复制到每个符号的前端,用于克服多径传播带来的时延。 - **调制/解调**:采用QAM(Quadrature Amplitude Modulation,正交幅度调制)等调制方式对数据进行调制和解调。 #### 2.2 系统功能验证 功能验证主要包括以下步骤: - **参数配置**:配置XSRP平台的射频参数和其他系统参数。 - **实验运行**:运行基于XSRP的OFDM通信系统实验程序。 - **结果分析**:分析实验结果,评估系统的性能指标,如误码率(BER)、吞吐量等。 ### 三、基于XSRP的TD-LTE物理层链路协议实现 #### 3.1 系统设计原理 TD-LTE(Time Division Duplex Long Term Evolution,时分双工长期演进)是一种移动通信标准,支持高速数据传输。基于XSRP平台的TD-LTE物理层链路协议实现,重点在于理解和实现TD-LTE的关键技术,如时分双工(TDD)、资源块分配、MIMO等。 **系统架构概述:** - **资源分配**:合理分配时隙和频段资源,实现高效的数据传输。 - **MIMO**:利用多输入多输出技术提高数据传输速率和稳定性。 - **调度算法**:采用适当的调度算法来优化资源分配。 - **信令交互**:实现终端与基站之间的信令交互,确保数据传输的正确性和完整性。 #### 3.2 系统功能验证 功能验证同样包括以下几个步骤: - **参数配置**:配置TD-LTE系统的各种参数,包括射频参数等。 - **实验运行**:运行基于XSRP的TD-LTE物理层链路协议实验程序。 - **结果分析**:分析实验结果,评估系统的性能指标,如吞吐量、延迟等。 ### 结论 通过以上三个实验的设计与实施,学生可以深入理解典型无线通信系统的系统构成、应用场景、关键技术及主要参数,并能够应用XSRP软件无线电平台、Labview和Matlab软件设计合适的系统结构和功能单元,选择合适算法编写应用程序。此外,还可以学会如何设计实验方案,构建实验系统,规范地进行实验并获取数据,正确分析和解释实验结果,最终达到对无线通信系统设计、调试和测试全过程的有效掌握。
2025-05-26 21:26:14 4.88MB 网络 网络 软件无线电 课程报告
1
无线充电技术详解:Maxwell Simplorer与Ansys教你WPT无线电能传输系统实战教程,无线充电技术解析:从Ansys Maxwell Simplorer仿真实战教程,深度探索无线电能传输之道,无线充电仿真 maxwell Simplorer无线充电,无线电能传输,WPT Ansys教程 ,无线充电仿真; Maxwell Simplorer; 无线电能传输; WPT; Ansys教程,Maxwell Simplorer无线充电仿真:无线电能传输与Ansys教程指南 无线充电技术是通过电磁感应或其他无线传播方式进行电能传输的技术,近年来随着科技的进步和对便携式电子设备的需求增长,该技术得到了迅猛发展。本教程深入讲解了无线充电技术的核心原理,以及如何使用Ansys Maxwell Simplorer进行仿真实战。通过本文内容,读者将能够了解无线电能传输(WPT)的整个工作流程,包括无线电能传输的原理、技术实现的关键因素、以及在仿真软件中如何模拟实际应用场景。 在无线充电技术的发展历程中,电磁感应原理的应用无疑是最为常见的一种方式。该技术基于法拉第电磁感应定律,通过创建一个交变磁场,使次级线圈感应出电流,从而实现电能的无线传输。然而,无线充电技术不仅仅局限于电磁感应方式,还包括磁共振、无线电波、激光传输等多种形式,每种方式都有其特定的应用场景和优缺点。 Maxwell Simplorer是一款由Ansys公司开发的电磁场仿真软件,它能够帮助工程师模拟复杂的电磁系统,进行高效的设计和优化。在无线充电技术的仿真实践中,Maxwell Simplorer能够模拟电磁场的分布,分析能量传输效率,以及预测系统在不同条件下的性能表现。通过该软件的仿真实验,工程师可以优化无线充电系统的线圈布局、材料选择和工作频率等关键参数,从而提高充电效率和安全性。 Ansys公司提供的仿真工具不仅限于Maxwell Simplorer,还包括HFSS、Q3D等先进的仿真软件,这些工具在无线充电技术的研发和应用中发挥着重要的作用。HFSS主要用于高频电磁场的仿真,而Q3D则专注于电磁场的3D仿真分析,这些工具的综合运用,可以全面分析无线充电系统中的电磁兼容性、热效应及功率损耗等问题。 此外,无线电能传输系统的设计不仅仅考虑电磁兼容性和效率,还要考虑系统的可靠性、安全性和成本效益。因此,在进行无线充电技术的仿真与设计时,还需考虑多种因素,例如线圈的尺寸、形状和间距,以及传输介质的特性等。这些因素直接影响到无线充电系统的性能,包括充电距离、充电效率和发热问题等。 在实际应用中,无线充电技术已经广泛应用于手机、电动汽车、医疗设备、工业设备等多个领域。对于电动汽车而言,无线充电技术能够提供更加便捷的充电方式,减轻用户的充电负担。而在医疗领域,无线充电技术可以用于植入式医疗设备,避免了导线对病患造成的不便和感染风险。随着技术的不断进步,无线充电技术未来有望实现更远距离、更高效率的电能传输,为人们的生活带来更加智能化和便利化的改变。 由于无线充电技术的多样性和复杂性,本教程以实战案例的方式,通过详细的仿真步骤和结果分析,指导读者逐步掌握无线充电技术的设计与应用。本教程不仅适合于电子工程、电气工程等相关专业的学生和工程师,同时也为对无线充电技术感兴趣的科技爱好者提供了宝贵的学习资料。通过阅读本教程,读者将能够深入了解无线充电技术的原理和仿真实践,为无线充电技术的创新和应用贡献自己的力量。
2025-05-19 17:13:28 2.86MB paas
1
内容概要:本文详细介绍了利用Maxwell和Simplorer进行无线电能传输(WPT)系统的联合仿真方法。首先,通过Maxwell建立磁耦合机构的几何模型并设置材料属性和激励条件,模拟发射和接收线圈的磁场分布。然后,在Simplorer中构建与磁耦合机构相连的电路系统,如串联谐振电路,并通过接口设置实现两者的联合仿真。最终,通过分析仿真结果,包括电流、电压、功率及传输效率等数据,优化无线电能传输系统的设计。 适合人群:从事无线电能传输研究的技术人员、高校相关专业师生以及对电磁仿真感兴趣的工程技术人员。 使用场景及目标:适用于无线电能传输系统的设计与优化,帮助研究人员深入了解磁耦合机构的磁场分布及其对外部电路性能的影响,从而提高系统的传输效率。 其他说明:文中还分享了一些实用的操作技巧和注意事项,如参数设置、误差校正等,有助于初学者更快掌握联合仿真的方法。
2025-05-19 15:01:38 124KB
1
《2024电赛B题无线电子抢答系统设计报告》是一份详细阐述电子工程领域竞赛项目的文档,主要涉及无线通信技术、嵌入式系统设计以及实时控制系统等多个关键知识点。该报告作为毕业设计的范文,为学生提供了一个实用的项目实例,有助于他们理解和掌握相关技术。 1. **无线通信技术**:无线电子抢答系统的核心在于无线通信模块,通常采用蓝牙、Wi-Fi或射频(RF)等技术实现设备间的通信。在设计过程中,需要考虑传输距离、信号稳定性、抗干扰能力以及功耗等因素。对于电赛B题,可能会特别关注快速响应时间,即从抢答信号发出到接收确认的时间,这要求无线通信协议具备低延迟特性。 2. **嵌入式系统设计**:抢答器通常基于微控制器或单片机进行开发,如Arduino、STM32等。嵌入式系统设计涵盖了硬件电路设计和软件编程两部分。硬件上,需要设计合适的接口电路,如按钮输入、无线通信模块连接等;软件上,需要编写控制程序,实现抢答逻辑和通信协议。 3. **实时操作系统(RTOS)**:为了保证抢答的公平性,系统需要实时响应按钮按下事件,因此可能需要使用RTOS来管理和调度任务。RTOS能够保证任务的优先级和实时性,确保抢答信号的优先处理。 4. **数据结构与算法**:在处理抢答逻辑时,可能涉及到队列、栈等数据结构,用于记录抢答顺序和状态。同时,需要设计高效的算法来检测并处理多个抢答信号,避免出现“抢答冲突”。 5. **电源管理**:考虑到抢答器可能需要长时间工作,电源管理是重要一环。设计应考虑电池续航,优化电源转换效率,并在不影响系统性能的前提下降低功耗。 6. **软件调试与测试**:在开发过程中,利用IDE进行代码调试,通过模拟和实物测试验证抢答系统的功能和性能。这包括单元测试、集成测试和系统测试,确保系统在各种条件下都能稳定运行。 7. **硬件原型制作与PCB设计**:从电路板布局到元器件选型,都需要考虑体积、成本和可靠性。PCB设计需要考虑信号完整性,防止电磁干扰,确保所有组件协同工作。 8. **安全性与合规性**:设计时还需遵循相关的电磁兼容(EMC)标准和无线电频率法规,确保设备不会对其他电子设备造成干扰,同时也符合比赛规则。 《2024电赛B题无线电子抢答系统设计报告》涵盖了电子工程领域的诸多关键技术,为学习者提供了宝贵的实践案例,帮助他们深入理解无线通信、嵌入式系统设计以及相关软硬件开发流程。通过这样的项目,学生可以提升自己的工程能力和创新能力,为未来的职业生涯打下坚实基础。
2025-05-10 23:50:20 9KB 毕业设计
1