随着深度学习技术的快速发展,许多研究者尝试利用深度学习来解决文本分类问题,特别在卷积神 经网络和循环神经网络方面,出现了许多新颖且富有成效的分类方法。本文对基于深度神经网络的文本分类问题进行分析。
2023-02-07 17:32:42 747KB 深度学习 文本分类技术
1
文本自动分类是信息检索与数据挖掘领域的研究热点与核心技术,近年来得到了广泛的关注和快速的发展.提出了基于机器学习的文本分类技术所面临的互联网内容信息处理等复杂应用的挑战,从模型、算法和评测等方面对其研究进展进行综述评论.认为非线性、数据集偏斜、标注瓶颈、多层分类、算法的扩展性及Web页分类等问题是目前文本分类研究的关键问题,并讨论了这些问题可能采取的方法.最后对研究的方向进行了展望.
2022-11-12 11:15:34 429KB 机器学习
1
【摘要】 文本自动分类是信息检索与数据挖掘领域的研究热点与核心技术,近年来得到了广泛的关注和快速的发展.提出了基于机器学习的文本分类技术所面临的互联网内容信息处理等复杂应用的挑战,从模型、算法和评测等方面对其研究进展进行综述评论.认为非线性、数据集偏斜、标注瓶颈、多层分类、算法的扩展性及Web页分类等问题是目前文本分类研究的关键问题,并讨论了这些问题可能采取的方法.最后对研究的方向进行了展望. 【Abstract】 In recent years, there have been extensive studies and rapid progresses in automatic text categorization, which is one of the hotspots and key techniques in the information retrieval and data mining field. Highlighting the state-of-art challenging issues and research trends for content information processing of Internet and other complex applications, this paper presents a survey on the up-to-date development in text categorization based on machine learning, including model, algorithm and evaluation. It is pointed out that problems such as nonlinearity, skewed data distribution, labeling bottleneck, hierarchical categorization, scalability of algorithms and categorization of Web pages are the key problems to the study of text categorization. Possible solutions to these problems are also discussed respectively. Finally, some future directions of research are given. 还原
1
针对传统文本分类方法对于海量数据分类速度慢精度差等问题,将并行计算应用到文本分类领域,设计了一套基于MapReduce的并行化文本分类框架,结合Bagging算法思想提出了支持向量机的并行训练方法,并在Hadoop云计算平台上进行了实验,实验结果表明该分类方法具有较快的分类速度和较高的分类精度。
2021-12-13 20:26:05 364KB 大数据
1
面向非对称和多标签的文本分类技术软件研究.docx
2021-10-15 16:03:05 73KB C语言
打包Matlab博士论文关于垃圾邮件分类-基于文本分类技术的垃圾邮件识别系统.pdf 改进的贝叶斯分类对垃圾邮件识别探讨.pdf 基于NP的垃圾邮件分析系统的设计与实现.pdf 基于文本分类技术的垃圾邮件识别系统.pdf 基于信息熵和决策分类技术的邮件识别研究.pdf 简体中文垃圾邮件分类的实验设计及对比研究.pdf 结合词相关特征与流行学习的中文问句分类.pdf 一种基于支持向量机的垃圾邮件识别方法.pdf 基本都是去年的论文,我去国家图书馆偷来的。那里清华同方还有各种数据库可以一天上网半小时偷。。。
2021-05-04 23:35:43 284KB matlab
1
文本分类技术经历了从专家系统到机器学习再到深度学习的发展过程。在20世纪80年代以前,基于规则系统的文本分类方法需要领域专家定义一系列分类规则,通过规则匹配判断文本类别。
2021-02-23 11:08:23 1.34MB 深度学习 文本分类
1
针对中文文本的自动分类问题,提出了一种逆向匹配算法。该算法的基本思路是构造一个带权值的分类主题词表,然后用词表中的关键词在待分类的文档中进行逆向匹配,并统计匹配成功的权值和,以权值和最大者作为分类结果。本算法可以避开中文分词的难点和它对分类结果的影响。理论分析和实验结果表明,该技术分类结果的准确度和时间效率都比较高,其综合性能达到了目前主流技术的水平。
1