基于Harry Potter的数据可视化数据集,内含2个工作簿,第一个的内容为人物关系的字段,第二个工作簿为人物名字以及他的传记的介绍。详细代码介绍参考https://blog.csdn.net/qq_57329395/article/details/127224354#comments_24427142。通过networkx进行关系图的绘制。 由于networkX是根据edge的关系来绘图,我们需要将关系整理成为元组格式,如('Sirius Black', 'Harry Potter')编号转名字将所有关系保存到列表里即可使用add_edges_from来绘制关系图。 我们拿到的数据有两个分页,分页character含有全部的哈利波特全部的人物姓名和id号及任务简介;分页relation含有带有id号的人物关系,但是该分页没有人物的姓名。我们需要整理数据为以下格式:('Sirius Black', 'Harry Potter')。
1
微博热搜数据可视化分析系统 技术框架 python + flask web + mysql + pycharm 角色介绍 普通用户 qqq 123456 模块分析 登录注册 数据爬取 数据清洗 数据可视化模块 热门话题排行 热词榜单 话题热度趋势和分布 话题情感指数和趋势 词云 NLP情感分析 小小程序员小小店 相关话题推送 分词主题数据提取 舆情分析 退出模块 数据库weibo_nlp_system 分析原理 我的最爱是动漫,你喜欢什么呢? 我 的 最爱 是 动漫 你 喜欢 什么 呢
2025-03-08 20:26:10 12.11MB python flask mysql pycharm
1
内容概要:本文介绍了名为‘DeepSeek+DeepResearch’的研发平台及其应用,涵盖从数据挖掘、数据分析到数据可视化等一系列任务。它能帮助用户实现高效精确的任务执行,例如爬虫数据采集、文件数据读取及文本集成等工作,特别是涉及复杂任务,如长思维链分析与多任务处理。文章还详细介绍了DeepSeek R1和Claude 3.5 sonnet等几个主要模型的特点,对比了这些模型在不同任务中的表现,讨论了它们各自的优势和劣势,包括性能平衡、多模态支持、可解释性以及轻量化设计等方面的特色。此外,文章探讨了这些模型的应用前景及未来发展方向,如在教育、金融、医疗、广告和智能客服等多个领域提供创新的支持和服务。 适合人群:从事数据处理的专业人士,科研工作者和有兴趣深入了解AI在文本、数据分析与应用领域的开发者与研究人员。 使用场景及目标:该系统适用于大数据量、高精度处理的任务,特别是在需要多模态处理和支持多种语言的情况下;此外,在涉及复杂逻辑推理或需要解释性的场合尤为合适。具体的应用目标包括但不限于提升数据采集的速度和准确度,优化数据分析流程并提高其结果的价值,以及改进现有系统的用户体验和功能丰富度等。 其他说明:尽管这些AI工具有着诸多优点,但也面临着诸如语言混杂问题以及长文本处理等方面的挑战。为了更好地利用此类技术,用户应当结合具体的业务需求来考虑使用哪种工具更为适宜,并密切关注该领域的未来发展动态,及时采纳最新的科技成果以维持竞争力。
2025-02-23 15:30:51 8.31MB 自然语言处理 数据挖掘 数据可视化
1
内容概要:介绍了五个基于R语言的数据分析实例:全国2000-2019年人口数据分析、一整套R语言数据分析与建模流程、使用ggplot2进行数据可视化的各种方式、R语言数据分析从入门到实践的内容,以及两种具体的回归分析案例(针对体脂数据和公共交通使用量对全球变暖的影响)。通过实际操作帮助理解R语言的各种应用。 适用人群:对于不同水平的学习者或R语言使用者都具有参考价值,尤其是初学者或是想要深化了解R语言高级用途的研究者。 使用场景及目标:涵盖利用R语言开展数据清洗、探索性分析、图表制作、统计推断及建模等多种活动。 阅读建议:本资料既可供初次接触R语言的新手学习基本的操作流程和技术,也为熟练掌握基本操作后希望通过实战项目深入理解和提高自己专业技能的专业人士提供了一个良好的进阶平台。
2024-12-24 18:29:39 12KB R语言 数据分析 数据可视化 ggplot2
1
Python 爬虫数据可视化分析大作业 1. 项目概述 本项目旨在使用Python爬虫技术从互联网获取数据,并对这些数据进行可视化分析。整个项目将分为以下几个步骤:数据获取、数据清洗、数据分析和数据可视化。最终,我们将生成一个详细的文档,展示整个过程和分析结果。 2. 数据获取 我们将使用Python的requests库和BeautifulSoup库来爬取数据。目标网站为某电商平台,我们将获取商品的价格、评价数量和评分等信息。
2024-12-22 18:39:29 2.72MB python 爬虫
1
数据可视化是现代信息技术领域的重要组成部分,它通过图形化的方式将复杂的数据进行呈现,使得数据分析更加直观易懂。在这个“大数据可视化项目模版.zip”压缩包中,初学者可以找到一系列资源来帮助他们入门并实践大数据可视化项目。这些模版可以在Eclipse这样的集成开发环境中使用,表明它们可能是基于Java或者其他支持Eclipse的编程语言开发的。 我们要理解大数据的基本概念。大数据是指那些在规模、速度和多样性方面超出传统处理能力的数据集。它包含了结构化、半结构化和非结构化的数据,例如日志文件、社交媒体数据、图像和视频等。对大数据的分析能够揭示隐藏的模式、趋势和关联,为企业决策提供有力支持。 可视化在大数据中的作用是至关重要的。通过图表、地图、仪表盘等形式,我们可以快速解读大量信息,发现数据背后的故事。常见的大数据可视化工具包括Tableau、Power BI、D3.js等,它们提供了丰富的图表类型和交互功能。 在Eclipse中实现大数据可视化项目,通常会涉及以下技术栈: 1. **编程语言**:Eclipse支持多种语言,如Java、Python、Scala等。Java因其跨平台性和丰富的库(如Apache Spark、Hadoop)而常用于大数据处理。 2. **数据处理框架**:Apache Spark是大数据处理的常用框架,它支持实时和批处理,具有强大的数据处理和机器学习能力。可以与Eclipse结合,通过Spark的API进行编程。 3. **可视化库**:对于Java,JFreeChart和JavaFX可以用于创建图表;Python用户可能选择Matplotlib或Seaborn;如果是Web应用,JavaScript的D3.js库则非常流行。 4. **数据存储**:Hadoop的HDFS提供了分布式文件系统,用于存储大规模数据。数据库如HBase、Cassandra也可用于NoSQL数据的存储。 5. **数据获取**:可能需要使用ETL(提取、转换、加载)工具来从不同来源获取数据,如Kafka用于流数据处理。 6. **前端展示**:对于Web应用,HTML、CSS和JavaScript构建用户界面,与后端通过API交互,将数据可视化结果展示出来。 7. **设计原则**:有效的可视化设计应遵循一些基本原则,如清晰性、一致性、适当的比例和颜色使用,确保信息传达的准确性和效率。 这个压缩包中的项目模版可能包括了以上部分或全部组件,初学者可以通过分析模版代码,了解如何将数据导入、处理、转换,以及如何利用可视化库创建图表。通过实践这些模版,不仅可以提升编程技能,还能深入理解大数据可视化项目的工作流程和最佳实践。 这个“大数据可视化项目模版.zip”是一个宝贵的资源,为初学者提供了动手实践的机会,帮助他们快速掌握大数据可视化的关键技术和工具。通过学习和运用这些模版,学习者可以提升自己的数据分析和可视化能力,为未来的项目开发打下坚实基础。
2024-12-15 19:22:43 24.2MB 可视化
1
程序开发软件:Pycharm 数据库:mysql 现在介绍的是一个用Python开发的爬取二手车网站数据及其分析的程序。爬取的时候采用selenium驱动google浏览器进行数据的抓取,抓取的网页内容传入lxml模块的etree对象HTML方法通过xpath解析DOM树,不过二手车的关键数据比如二手车价格,汽车表显里程数字采用了字体文件加密,这里我们只能随机生成一个价格用于演示程序的完整运行,如果想破解的话可能要截图后利用图片识别技术了。然后数据的展示采用pyecharts,它是一个用于生成 Echarts 图表的类库。爬取的数据插入mysql数据库和分析数据读取mysql数据库表都是通过pymysql模块操作!
2024-11-14 07:40:30 53.99MB python 爬虫
1
Java是一种高性能、跨平台的面向对象编程语言。它由Sun Microsystems(现在是Oracle Corporation)的James Gosling等人在1995年推出,被设计为一种简单、健壮、可移植、多线程、动态的语言。Java的主要特点和优势包括以下几个方面: 跨平台性(Write Once, Run Anywhere): Java的代码可以在不同的平台上运行,只需编写一次代码,就可以在任何支持Java的设备上执行。这得益于Java虚拟机(JVM),它充当了代码和底层硬件之间的中介。 面向对象: Java是一种纯粹的面向对象编程语言,支持封装、继承和多态等面向对象的概念。这使得Java编写的代码更加模块化、可维护和可扩展。 多线程支持: Java内置了对多线程的支持,允许程序同时执行多个任务。这对于开发需要高并发性能的应用程序(如服务器端应用、网络应用等)非常重要。 自动内存管理(垃圾回收): Java具有自动内存管理机制,通过垃圾回收器自动回收不再使用的对象,使得开发者不需要手动管理内存,减轻了程序员的负担,同时也减少了内存泄漏的风险。
2024-11-10 09:07:13 32.38MB
1
大学生参加学科竞赛有着诸多好处,不仅有助于个人综合素质的提升,还能为未来职业发展奠定良好基础。以下是一些分析: 首先,学科竞赛是提高专业知识和技能水平的有效途径。通过参与竞赛,学生不仅能够深入学习相关专业知识,还能够接触到最新的科研成果和技术发展趋势。这有助于拓展学生的学科视野,使其对专业领域有更深刻的理解。在竞赛过程中,学生通常需要解决实际问题,这锻炼了他们独立思考和解决问题的能力。 其次,学科竞赛培养了学生的团队合作精神。许多竞赛项目需要团队协作来完成,这促使学生学会有效地与他人合作、协调分工。在团队合作中,学生们能够学到如何有效沟通、共同制定目标和分工合作,这对于日后进入职场具有重要意义。 此外,学科竞赛是提高学生综合能力的一种途径。竞赛项目通常会涉及到理论知识、实际操作和创新思维等多个方面,要求参赛者具备全面的素质。在竞赛过程中,学生不仅需要展现自己的专业知识,还需要具备创新意识和解决问题的能力。这种全面的综合能力培养对于未来从事各类职业都具有积极作用。 此外,学科竞赛可以为学生提供展示自我、树立信心的机会。通过比赛的舞台,学生有机会展现自己在专业领域的优势,得到他人的认可和赞誉。这对于培养学生的自信心和自我价值感非常重要,有助于他们更加积极主动地投入学习和未来的职业生涯。 最后,学科竞赛对于个人职业发展具有积极的助推作用。在竞赛中脱颖而出的学生通常能够引起企业、研究机构等用人单位的关注。获得竞赛奖项不仅可以作为个人履历的亮点,还可以为进入理想的工作岗位提供有力的支持。
2024-11-10 09:05:10 32.38MB 学科竞赛
1
在本项目中,我们利用Python爬虫技术对智联招聘网站上的岗位信息进行了高效而稳定的采集,最终获得了超过5000条的数据。这个过程涵盖了网络数据获取、数据处理和数据可视化的多个重要环节,是Python在数据分析领域的一个典型应用案例。 Python爬虫是数据采集的核心工具。Python以其丰富的库支持,如BeautifulSoup、Scrapy等,使得编写爬虫程序变得相对简单。在这个项目中,我们可能使用了requests库来发送HTTP请求,获取网页源代码,然后使用解析库如BeautifulSoup解析HTML,提取出岗位信息,如职位名称、薪资范围、工作地点、公司名称等关键数据。为了实现稳定爬取,我们需要考虑反爬策略,例如设置合适的请求间隔、使用User-Agent模拟浏览器行为,甚至可能使用代理IP来避免被目标网站封禁。 数据清洗是确保数据质量的关键步骤。在采集过程中,数据可能会存在格式不一致、缺失值、异常值等问题。通过Python的pandas库,我们可以对数据进行预处理,包括去除空值、转换数据类型、处理重复项等,确保后续分析的有效性。此外,对于非结构化的文本信息,如职位描述,可能还需要进行文本清洗,如去除标点符号、停用词,进行词干提取等,以便进一步分析。 接下来,数据可视化是理解数据和提炼洞见的有效手段。这里可能使用了matplotlib或seaborn库绘制各种图表,如柱状图、折线图、饼图等,展示不同职位的分布、薪资水平的变化趋势、各地区岗位需求等。对于地理位置数据,可能还利用geopandas和folium实现了地图可视化,显示各地区招聘岗位的热点分布。此外,wordcloud或jieba库可能用于制作词云图,揭示职位描述中的高频词汇,帮助洞察行业热门技能或需求。 这个项目充分展示了Python在数据科学领域的强大能力,从数据的获取到分析再到呈现,全程使用Python完成,体现了其在爬虫、数据处理和可视化方面的灵活性和实用性。通过这样的实践,不仅可以了解职场动态,也可以提升数据分析技能,为决策提供有价值的信息。
2024-11-06 14:01:58 7KB python 爬虫 数据清洗 数据可视化
1