Python回归预测与SHAP可视化[项目源码]

上传者: nut55 | 上传时间: 2025-12-08 15:12:03 | 文件大小: 12.28MB | 文件类型: ZIP
本文详细介绍了基于Python的回归预测模型构建及SHAP可视化解释的全过程。首先通过pandas和matplotlib等库加载和可视化数据分布,包括数值型和类别型特征的分布分析。接着使用递归特征消除(RFE)进行特征选择,并划分训练集和测试集。随后构建了线性回归、随机森林和XGBoost三种回归模型,并进行了模型训练和评估,比较了各模型的MSE、RMSE、R2等指标。最后重点展示了如何使用SHAP库对XGBoost模型进行可视化解释,包括特征重要性、依赖图、热力图等多种可视化方法,帮助理解模型预测结果和特征影响。 在数据科学领域中,Python语言因其强大的库支持和应用的广泛性成为了解决问题的重要工具。回归分析是一种统计学中用来预测和分析变量之间关系的方法,它通过建立数学模型来描述变量之间的依赖关系。在Python中,利用各种库来构建回归预测模型已经成为一项基础技能。 在构建回归模型的过程中,数据的预处理是不可或缺的一步。使用pandas库可以方便地加载和处理数据集,而matplotlib库则提供了强大的数据可视化功能,使得数据分析师能够直观地观察到数据的分布情况。数据分布的可视化有助于识别数据中的趋势、异常值以及潜在的数据问题,比如数值型和类别型特征的分布分析,这对于后续的特征选择和模型建立有着至关重要的作用。 特征选择是提高模型性能的重要环节,通过递归特征消除(RFE)方法,可以从原始特征中筛选出最具预测力的特征,这一步骤有利于简化模型,减少过拟合的风险。同时,划分训练集和测试集是评估模型泛化能力的关键步骤,训练集用于模型学习,测试集用于检验模型在未知数据上的表现。 在构建回归模型时,线性回归、随机森林和XGBoost是三种常见的模型选择。线性回归模型简洁直观,适用于数据特征和目标变量之间呈现线性关系的情况。随机森林模型作为一种集成学习方法,它通过构建多棵决策树来提高预测的准确性和鲁棒性。XGBoost模型则是一种优化的分布式梯度提升库,它在处理大规模数据时表现优异,且具有出色的预测准确率和速度。 模型训练和评估是机器学习流程中的关键环节,通过比较不同模型的均方误差(MSE)、均方根误差(RMSE)和决定系数(R²)等指标,可以定量地评估模型的性能。这些指标反映了模型预测值与实际值之间的差异,其中MSE和RMSE越小表示模型预测误差越小,而R²值越接近1表示模型的解释力越强。 SHAP(SHapley Additive exPlanations)是一种基于博弈论的Shapley值来解释机器学习模型预测的工具。通过使用SHAP库,数据分析师可以深入了解模型的预测结果,包括各个特征对模型预测的具体贡献度。SHAP提供了多种可视化方法,例如特征重要性图、依赖图和热力图等,这些图示方法直观地展示了特征与预测值之间的关系,帮助分析师理解和解释模型预测背后的逻辑。 随着数据科学的不断进步,Python在这一领域中的应用愈发成熟。基于Python的回归预测模型和SHAP可视化解释为数据分析师提供了一套完善的工具集,使得机器学习模型的构建和解释更加高效和直观。这些技术和工具的普及,不仅加深了对数据的理解,也为行业解决方案的创新提供了坚实的基础。

文件下载

资源详情

[{"title":"( 64 个子文件 12.28MB ) Python回归预测与SHAP可视化[项目源码]","children":[{"title":"CVGrZzdgFNjnAqweE6kv-master-3bc0a7b25b8367ef79cf208ef9b66dc809abfbb4","children":[{"title":"enterprise_info_crawler.py <span style='color:#111;'> 13.28KB </span>","children":null,"spread":false},{"title":"jiaxing_shap_dependence_heavy_metals.png <span style='color:#111;'> 174.38KB </span>","children":null,"spread":false},{"title":"pollution_analysis_results.png <span style='color:#111;'> 6.04MB </span>","children":null,"spread":false},{"title":"jiaxing_pollution_source_probabilities.csv <span style='color:#111;'> 2.54KB </span>","children":null,"spread":false},{"title":"jiaxing_pollution_risk_map.csv <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"jiaxing_optimized_well_locations.csv <span style='color:#111;'> 7.26KB </span>","children":null,"spread":false},{"title":"pollution_source_identification.py <span style='color:#111;'> 15.90KB </span>","children":null,"spread":false},{"title":"companies_test.csv <span style='color:#111;'> 747B </span>","children":null,"spread":false},{"title":"enhanced_crawler.log <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false},{"title":"enterprise_results_20250910_180047_report.txt <span style='color:#111;'> 429B </span>","children":null,"spread":false},{"title":"jiaxing_shap_waterfall.png <span style='color:#111;'> 220.27KB </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_dependence_cod.png <span style='color:#111;'> 114.39KB </span>","children":null,"spread":false},{"title":"enterprise_info_enhanced_20250910_175416.xlsx <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"jiaxing_groundwater_data.csv <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_dependence_pollution_index_squared.png <span style='color:#111;'> 133.90KB </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_dependence_industrial_density.png <span style='color:#111;'> 143.08KB </span>","children":null,"spread":false},{"title":"jiaxing_groundwater_data.py <span style='color:#111;'> 7.19KB </span>","children":null,"spread":false},{"title":"test_companies.xlsx <span style='color:#111;'> 758B </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_summary.png <span style='color:#111;'> 341.88KB </span>","children":null,"spread":false},{"title":"create_csv_test.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"jiaxing_data_description.csv <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"requirements_crawler.txt <span style='color:#111;'> 157B </span>","children":null,"spread":false},{"title":"enterprise_api_crawler.py <span style='color:#111;'> 14.97KB </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_dependence_ammonia.png <span style='color:#111;'> 131.34KB </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_dependence_permeability.png <span style='color:#111;'> 147.08KB </span>","children":null,"spread":false},{"title":"enterprise_info_enhanced_20250910_175416_detailed_report.txt <span style='color:#111;'> 273B </span>","children":null,"spread":false},{"title":"results.csv <span style='color:#111;'> 1.60KB </span>","children":null,"spread":false},{"title":"csv_crawler.log <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_feature_importance.png <span style='color:#111;'> 268.58KB </span>","children":null,"spread":false},{"title":"jiaxing_analysis_report.md <span style='color:#111;'> 2.19KB </span>","children":null,"spread":false},{"title":"jiaxing_shap_bar.png <span style='color:#111;'> 226.29KB </span>","children":null,"spread":false},{"title":"jiaxing_well_placement_report.md <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"jiaxing_shap_dependence_distance_to_source.png <span style='color:#111;'> 190.49KB </span>","children":null,"spread":false},{"title":"extract_enterprise_data.py <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"test_enterprises.xlsx <span style='color:#111;'> 5.29KB </span>","children":null,"spread":false},{"title":"jiaxing_model_performance.png <span style='color:#111;'> 564.32KB </span>","children":null,"spread":false},{"title":"enterprise_csv_crawler.py <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"boxplots_and_correlation.png <span style='color:#111;'> 494.33KB </span>","children":null,"spread":false},{"title":"well_placement_visualization.html <span style='color:#111;'> 14.34KB </span>","children":null,"spread":false},{"title":"GradientBoosting_shap_dependence_heavy_metals.png <span style='color:#111;'> 136.56KB </span>","children":null,"spread":false},{"title":"jiaxing_comprehensive_analysis_report.md <span style='color:#111;'> 967B </span>","children":null,"spread":false},{"title":"numeric_features_distribution.png <span style='color:#111;'> 384.77KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 138B </span>","children":null,"spread":false},{"title":"jiaxing_shap_decision.png <span style='color:#111;'> 470.23KB </span>","children":null,"spread":false},{"title":"enhanced_enterprise_crawler.py <span style='color:#111;'> 20.53KB </span>","children":null,"spread":false},{"title":"企业信息爬虫使用说明.md <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false},{"title":"jiaxing_complete_regression_analysis.py <span style='color:#111;'> 23.16KB </span>","children":null,"spread":false},{"title":"well_placement_optimization.py <span style='color:#111;'> 26.27KB </span>","children":null,"spread":false},{"title":".inscode <span style='color:#111;'> 92B </span>","children":null,"spread":false},{"title":"jiaxing_shap_dependence_ammonia.png <span style='color:#111;'> 218.32KB </span>","children":null,"spread":false},{"title":"enterprise_cache.db <span style='color:#111;'> 12.00KB </span>","children":null,"spread":false},{"title":"companies_test.xlsx <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"jiaxing_shap_dependence_cod.png <span style='color:#111;'> 179.59KB </span>","children":null,"spread":false},{"title":"api_crawler.log <span style='color:#111;'> 354B </span>","children":null,"spread":false},{"title":"jiaxing_shap_dependence_industrial_density.png <span style='color:#111;'> 164.31KB </span>","children":null,"spread":false},{"title":"jiaxing_regression_model_explanation_practice.md <span style='color:#111;'> 10.16KB </span>","children":null,"spread":false},{"title":"create_test_file.py <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"jiaxing_well_placement_optimization.png <span style='color:#111;'> 706.14KB </span>","children":null,"spread":false},{"title":"jiaxing_shap_summary.png <span style='color:#111;'> 431.32KB </span>","children":null,"spread":false},{"title":"enterprise_results_20250910_180047.csv <span style='color:#111;'> 3.52KB </span>","children":null,"spread":false},{"title":"jiaxing_pollution_risk_map.png <span style='color:#111;'> 1.56MB </span>","children":null,"spread":false},{"title":"regression_shap_analysis.py <span style='color:#111;'> 11.07KB </span>","children":null,"spread":false},{"title":"model_evaluation.png <span style='color:#111;'> 98.09KB </span>","children":null,"spread":false},{"title":"jiaxing_pollution_analysis.py <span style='color:#111;'> 17.10KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明