内容概要:该文档介绍了使用YOLOv11与OpenPose相结合来开发的一个摔倒姿态识别系统的设计与实现细节。系统主要特征体现在高速精准检测物体及人体姿态的能力上,同时还通过数据增强等方式提升了模型性能,在软件界面上也实现了易用性和人性化设置。 适用人群:面向计算机视觉领域的研究和开发者以及对图像分析有兴趣的专业技术人员。 使用场景及目标:适用于老年人照护中心、医院等公共场所的安全监视系统,能够在人发生摔倒的情况下快速作出反应。 其他说明:提出了未来的改进方向如集成智能警报和实时摄像头检测等功能模块以拓展系统实用价值。
1
基于yolov5和openpose人体骨骼关键点实现的摔倒姿态识别检测系统源码+模型+项目操作说明(可训练其他姿态模型).zip 【项目介绍】 主要使用yolov5算法与openpose算法模型相结合,并非直接使用yolov5检测摔倒和站立两种状态! 项目中提供了yolov5s.pt人形检测模型(可自己再训练),摔倒姿态openpose.git模型(可训练其他姿态模型)。 通过open pose 可以获得人体的关键点图 提供了项目操作说明文档,按照操作配置好环境,修改路径运行即可。另外可以自定义修改摔倒检测阈值、判别条件等,代码关键位置有注释解释!容易理解~ 使用过程有相关问题,可以留言或者私信!请放心下载!!!
Falling Posture Image Dataset摔倒姿态图片数据集。 本数据集来源于2020年中国华录杯·数据湖算法大赛
2022-10-17 22:05:42 366.83MB 摔倒姿态 图片 数据集 深度学习
1
人体摔倒姿态检测.zip
2022-06-16 09:05:12 373.8MB 数据集