一种多路分时复用混叠滤波器针对应用于飞行试验的网络化机载采集系统中数字信号混叠问题,采用变采样率的混叠滤波器的设计,解决在数字信号处理过程中由于采样率过高,在进行整数倍抽取时有可能会出现数字信号混叠问题。同时将数字滤波器通过FPGA实现,实现了多路分时复用功能,支持8路同步采样数据的数字信号处理,并进行滤波器特性测试,对于8 kHz的原始信号,半带滤波器的截止频率为Fs/4,即2 kHz,经过系统后的-3 dB对应的信号频率2 048 Hz,幅频特性曲线与Matlab仿真结果一致。
2025-10-02 17:45:00 2.11MB 数字滤波器; FPGA;
1
基于自扰算法的四旋翼无人机姿态控制与轨迹控制研究(附参考资料),基于自扰算法的四旋翼无人机姿态控制与轨迹控制研究(附参考资料),基于自扰算法的四旋翼无人机姿态控制 本程序基于MATLAB中Simulink仿真和.m函数文件。 附有相关参考资料,方便加深对自扰算法的理解。 另有无人机的轨迹控制,编队飞行相关资料,可一并打包。 ,自扰算法; 四旋翼无人机姿态控制; MATLAB仿真; .m函数文件; 轨迹控制; 编队飞行,自扰算法驱动的四旋翼无人机姿态控制仿真程序:附轨迹编队飞行资料 本文研究了自扰算法在四旋翼无人机姿态控制与轨迹控制中的应用,重点分析了该算法在提高四旋翼无人机飞行稳定性、准确性和干扰能力方面的作用。通过MATLAB的Simulink仿真环境以及编写.m函数文件,研究者得以构建出四旋翼无人机的姿态控制模型,并对其进行了详细的仿真测试。研究表明,自扰算法在处理四旋翼无人机复杂动态过程中的外部干扰和内部参数变化具有较好的适应性和稳定性。 自扰算法是一种新型的控制策略,它结合了传统控制理论与现代控制理论的优点,能够自动补偿和抑制系统中的各种不确定性和干扰,提高控制系统的性能。在四旋翼无人机的姿态控制与轨迹控制中,自扰算法的核心优势在于能够实现快速准确的动态响应,以及对飞行器模型参数变化和外部环境干扰的鲁棒性。 MATLAB中的Simulink是一个强大的仿真工具,它允许用户通过直观的图形界面搭建复杂的动态系统模型,并进行仿真和分析。在本研究中,Simulink被用来模拟四旋翼无人机的姿态控制过程,并通过.m函数文件实现自扰算法的程序化控制。这样不仅提高了仿真效率,还便于对控制算法进行调整和优化。 四旋翼无人机的轨迹控制是另一个重要的研究方向。它关注的是如何设计控制算法使得无人机能够按照预定的轨迹进行飞行。本研究中不仅包含了姿态控制的内容,还扩展到了轨迹控制,甚至编队飞行的相关资料,提供了对于四旋翼无人机飞行控制的全面认识。编队飞行的研究对于无人机群协同作战、救援任务等具有重要的应用价值。 通过本研究提供的技术摘要、分析报告和仿真结果,研究者和工程师可以更深入地理解自扰算法在四旋翼无人机控制中的应用,并通过附带的参考资料进一步探索和完善相关理论和技术。这项研究不仅推动了四旋翼无人机飞行控制技术的发展,也为未来无人机在多个领域中的应用开辟了新的可能性。
2025-09-24 10:24:55 6.51MB
1
基于自扰控制的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,自扰控制下的PMSM非奇异终端滑模控制:详细公式推导与稳定性分析,含1.5延时补偿设计方法,基于自扰控制的非奇异终端滑模控制_pmsm 包含:详细公式推导以及终端滑模控制设计方法以及稳定性推导、1.5延时补偿。 ,基于自扰控制的非奇异终端滑模控制_pmsm; 详细公式推导; 终端滑模控制设计方法; 稳定性推导; 1.5延时补偿。,自扰控制下的PMSM非奇异终端滑模控制设计方法研究 在现代电力电子和自动控制领域,永磁同步电机(PMSM)因其高效率、高功率密度以及良好的控制性能而被广泛应用。在实际应用中,电机控制的稳定性与快速响应能力是影响系统性能的关键因素。自扰控制(ADRC)和非奇异终端滑模控制(NTSMC)作为两种先进的控制策略,在提高系统鲁棒性、减少对系统模型精确性的依赖方面展现了巨大潜力。本文旨在探讨基于自扰控制的PMSM非奇异终端滑模控制策略的详细公式推导、稳定性分析,以及1.5延时补偿设计方法。 自扰控制技术是一种能够有效应对系统外部扰动和内部参数变化的控制方法。它通过实时估计和补偿系统内外扰动来实现对系统动态行为的有效控制。在电机控制系统中,ADRC可以显著增强系统对负载变化、参数波动等不确定因素的适应能力,从而提高控制精度和鲁棒性。 非奇异终端滑模控制是一种新型的滑模控制技术,其核心在于设计一种非奇异滑模面,避免传统滑模控制中可能出现的“奇异点”,同时结合终端吸引项,使得系统状态在有限时间内收敛至平衡点。NTSMC具有快速、准确以及无需切换控制输入的优点,非常适合用于高性能电机控制系统。 在研究中,首先需要详细推导基于自扰控制的PMSM非奇异终端滑模控制的相关公式。这包括建立PMSM的数学模型,设计自扰控制器以补偿系统内外扰动,以及构造非奇异终端滑模控制律。在推导过程中,需要充分考虑电机的电磁特性、转动惯量以及阻尼效应等因素。 接下来,稳定性分析是控制策略设计的关键环节。通过李雅普诺夫稳定性理论,可以对控制系统的稳定性进行深入分析。通过选择合适的李雅普诺夫函数,证明在给定的控制律作用下,系统的状态能够收敛至平衡点,从而确保电机控制系统的稳定性。 1.5延时补偿设计方法是提高系统控制性能的重要环节。在电机控制系统中,由于信息处理、执行器动作等方面的延迟,系统中必然存在一定的时延。为了保证控制性能,需要在控制策略中引入延时补偿机制。通过精确估计系统延迟,并将其纳入控制律中,可以有效减少时延对系统性能的影响。 本文档中包含了多个以“基于自扰控制的非奇异终端滑模控制”为主题的文件,文件名称后缀表明了文件可能是Word文档、HTML网页或其他格式。从文件列表中可以看出,内容涵盖了详细公式推导、滑模控制设计方法、稳定性分析以及延时补偿设计方法等多个方面。此外,文档中还包含“应用一”、“应用二”等内容,表明了该控制策略在不同应用场合下的具体运用和实验研究。 基于自扰控制的PMSM非奇异终端滑模控制策略通过结合ADRC和NTSMC的优势,能够有效提升电机控制系统的稳定性和响应速度,减少对系统精确模型的依赖,并通过延时补偿设计提高控制性能。这项研究为高性能电机控制系统的开发提供了新的思路和方法。
2025-09-19 14:14:25 659KB edge
1
Comsol水力压裂 渗流-应力-损伤耦合模型 本模型采用Comsol软件模拟注水过程中的岩石损伤和孔隙水压发展,采用经典摩尔库伦准则和拉阶段准则计算损伤 无需借MATLAB计算损伤变量在Comsol里面采用内置模块计算损伤变量,计算效率高 岩石采用Weibull分布描述非均质性,非均匀参数通过MATLAB用Weibull分布生成,然后导入Comsol (附源文件和参考lunwen) ,Comsol模拟; 渗流-应力-损伤耦合模型; 岩石损伤; 孔隙水压发展; 摩尔库伦准则; 拉阶段准则; Weibull分布非均质性描述; 计算效率高。,Comsol模拟水力压裂:渗流-应力-损伤耦合模型研究
2025-09-16 10:27:47 5.19MB
1
在现代工业自动化和汽车领域,电机控制技术的重要性不言而喻。永磁同步电机(PMSM)由于其高效的能效比和卓越的动态性能,在高性能伺服驱动系统中得到广泛应用。伺服控制系统是电机控制技术的核心部分,其稳定性和控制效果直接影响整个驱动系统的性能。本篇文章将详细介绍永磁同步电机三环位置速度电流伺服控制系统的技术,特别是采用线性自扰LADRC控制和电流转矩前馈技术后的控制效果及其稳定性。 我们需要明确永磁同步电机三环控制的基本概念。在PMSM控制中,通常采用三环控制策略,即内环为电流环,中间环为速度环,外环为位置环。电流环负责调节电机绕组中的电流,以产生所需的电磁转矩;速度环则控制电机的转速,使电机稳定运行在设定的速度;位置环则精确控制电机的转轴位置,满足精确运动控制的需求。这三个环互相配合,共同确保电机的高精度和稳定性。 随着控制技术的发展,传统PI(比例-积分)控制逐渐显现出对参数变化敏感、干扰能力弱等问题。为了解决这些问题,线性自扰控制(LADRC)应运而生。LADRC通过引入跟踪微分器(TD)和扩展状态观测器(ESO),有效提高了系统的动态响应速度和干扰能力。在此基础上,对电流转矩的前馈控制进一步提升了系统对外部扰动和内部参数变化的适应性。 LADRC控制与电流转矩前馈控制相结合的控制模型,能够有效解决传统控制策略中的不足。电流转矩前馈控制通过补偿电流和转矩的静态误差,减少了动态过渡过程中的延迟和超调,使得电机响应更加迅速和平滑。这种控制模型的应用,使得PMSM的控制效果显著提高,系统稳定性也得到了加强。 在永磁同步电机伺服控制系统的设计与实现过程中,除了控制策略本身,还有很多技术细节需要重视。例如,电机参数的精确测量、控制算法的实时性优化、系统运行时的热管理等。此外,随着大数据技术的发展,电机控制系统的数据采集和处理能力也在不断提升。通过对大量运行数据的分析,可以进一步优化控制模型,提高系统的性能和可靠性。 在应用方面,永磁同步电机由于其优异的性能,广泛应用于电动汽车、数控机床、机器人等高精度、高响应要求的场合。随着新能源汽车和智能制造的快速发展,PMSM伺服控制系统的市场需求日益增长。因此,研究和开发更为高效、稳定的PMSM伺服控制系统具有重要的现实意义和广阔的应用前景。 永磁同步电机三环位置速度电流伺服控制系统通过采用线性自扰控制和电流转矩前馈技术,有效提高了电机控制的稳定性和控制效果。随着大数据技术的发展,结合高精度传感器和先进控制算法,PMSM伺服控制系统将有望在未来实现更高级别的自动化和智能化,为各行业提供更加可靠的动力源。
2025-09-03 13:58:01 44KB
1
内容概要:IEC 61000-6-2-2019是欧洲标准,规定了工业环境中电气和电子设备的电磁兼容性(EMC)扰度要求。该标准适用于频率范围为0 Hz到400 GHz的设备,涵盖静电放电、射频电磁场、快速瞬变、浪涌等多种扰度测试。标准定义了不同端口(如外壳端口、信号/控制端口、直流和交流电源端口)的具体测试要求,并提供了性能准则以评估设备在测试期间或之后的表现。此外,标准还明确了测试条件、产品文档要求、适用性和测量不确定性等内容。; 适合人群:从事电气和电子设备设计、制造、测试的工程师和技术人员,以及需要了解工业环境电磁兼容性的相关从业人员。; 使用场景及目标:①确保电气和电子设备在工业环境中具备足够的电磁干扰能力;②指导制造商进行产品EMC测试,确保符合国际标准要求;③为产品委员会提供未来可能相关的测试建议,以应对新的电磁现象。; 其他说明:本标准由国际电工委员会(IEC)技术委员会77制定,取代了2005年版本。它不仅适用于新产品的开发,也可用于现有产品的改进和认证。标准详细列出了各类测试的具体参数和方法,并提供了附录A,以指导产品委员会考虑未来可能出现的电磁现象及其测试要求。
1
Android OpenGL ES多重采样锯齿MSAA演示demo源码 多重采样锯齿MSAA,详解见:https://blog.csdn.net/github_27263697/article/details/143859755 目录 一、锯齿概念 二、多重采样 三、OpenGL中的MSAA 1、多样本缓冲的使用 2、离屏MSAA——多采样帧缓冲 1、多采样纹理附件 2、多采样渲染缓冲对象 3、渲染到多采样帧缓冲 四、自定义锯齿算法 五、总结 在计算机图形学中,锯齿技术旨在改善图像质量,减少图像中物体边缘的锯齿状外观。多重采样锯齿(MSAA)是一种有效的锯齿技术,它通过对图像的边缘进行多次采样,然后合并这些样本,以达到平滑边缘的效果。Android平台上的OpenGL ES提供了MSAA的支持,使得开发者能够在移动设备上实现高质量的图形渲染。 一、锯齿概念 锯齿技术的核心思想是消除或减少图像中由于显示设备分辨率限制而产生的不真实锯齿现象。常见的锯齿技术包括快速近似锯齿(FXAA)、多重采样锯齿(MSAA)、时间锯齿(TAA)等。锯齿的实现方法多样,但目的都是为了使得渲染的场景更加真实和美观。 二、多重采样 多重采样锯齿(MSAA)是通过在图形管线的某些阶段,对一个像素的多个位置进行采样,并在渲染管线的后期阶段将这些采样合并,以计算出最终像素颜色的技术。MSAA主要用在图形渲染的几何处理和光栅化阶段,有效减少边缘锯齿,提高图像质量。 三、OpenGL中的MSAA 1、多样本缓冲的使用 在OpenGL ES中,MSAA通过使用多样本缓冲区来实现。多样本缓冲区(Multisample buffers)允许对每个像素进行多次采样,每个采样点可以有不同的深度和颜色信息。渲染过程中,每个几何图形都会在这些采样点上进行绘制,然后在最终的显示过程中,这些采样点的颜色值被合成一个像素值。 2、离屏MSAA——多采样帧缓冲 MSAA还可以通过多采样帧缓冲(Multisampled Framebuffer)来实现离屏渲染。在渲染过程中,通过创建一个包含多个样本的帧缓冲区,将所有渲染目标都绑定到这个缓冲区,从而实现在一个像素上进行多次采样的效果。 四、自定义锯齿算法 除了OpenGL ES内置的MSAA外,开发者还可以根据具体的应用场景自定义锯齿算法。例如,可以在后处理阶段使用图像空间的算法进行锯齿处理,或者结合MSAA和其他技术实现更高质量的锯齿效果。 五、总结 MSAA是一种在渲染管线中有效的锯齿技术,尤其适合于动态渲染场景。通过合理使用多重采样技术,可以有效提升渲染图像的质量,使得边缘更平滑,场景更真实。在OpenGL ES中,MSAA的实现需要配置适当的渲染缓冲区和帧缓冲区,并利用多样本缓冲来处理像素的多次采样。开发者在应用MSAA技术时,应根据实际的硬件性能和渲染需求来权衡锯齿效果与性能开销。
2025-08-07 15:13:27 58KB 多重采样 MSAA OpenGL
1
旋毛虫副肌球蛋白单克隆体的制备与鉴定,魏骏飞,顾园,本文利用杂交瘤技术制备分泌重组旋毛虫副肌球蛋白N端原(rTsP3)的单克隆体(McAb)并进行鉴定。以rTsP3免疫BALB/c小鼠,取其脾细
2025-08-06 18:09:03 320KB 首发论文
1
内容概要:本文详细探讨了永磁同步电机(PMSM)的三种主要控制策略——PI控制、线性自扰控制(LADRC)和非线性自扰控制(NLADRC)。首先介绍了PI控制的基本原理及其在转速环和电流环中的应用,指出其存在的超调问题。接着阐述了LADRC的扰动能力和鲁棒性优势,特别是在应对负载和参数变化时的表现。最后深入讲解了NLADRC的非线性特性和快速响应能力,强调其在复杂工况下的优越性能。通过对这三种控制策略的实验对比,得出了各自的特点和适用范围。 适合人群:从事电机控制系统设计、优化的技术人员,尤其是关注电动汽车、机器人和工业自动化领域的工程师。 使用场景及目标:帮助工程师理解不同控制策略的工作机制和优缺点,以便在实际项目中选择最合适的控制方法,提高电机的效率和稳定性。 其他说明:文中提供了丰富的参考学习资料,如《现代电机控制技术》、《自扰控制器原理与应用》及相关研究论文,供读者进一步深入学习。
2025-08-05 11:01:46 687KB
1
永磁同步电机控制策略研究:PI控制、线性自扰与非线性自扰的模型与效果对比分析,"探究永磁同步电机:PI控制、线性与非线性自扰技术的实施与效果对比",永磁同步电机PI控制和线性自扰以及非线性自扰控制模型 1、PI控制:转速环PI控制,电流环PI控制 2、线性自扰(LADRC):转速环LADRC,电流环PI控制 3、非线性自扰(NLADRC):转速环NLADRC,电流环PI控制 4、效果对比:PI控制存在超调,自扰控制无超调,且非线性自扰鲁棒性更强,响应更快 5、含参考学习资料 ,PI控制; 线性自扰(LADRC); 非线性自扰(NLADRC); 效果对比,永磁同步电机:PI与自扰控制模型对比研究
2025-08-05 11:00:40 400KB gulp
1