性能情况 Performance
所需环境 Environment
文件下载 Download
训练步骤 How2train
预测步骤 How2predict
评估步骤 How2eval
参考资料 Reference
训练步骤
a、训练VOC07+12数据集
数据集的准备
本文使用VOC格式进行训练,训练前需要下载好VOC07+12的数据集,解压后放在根目录
数据集的处理
修改voc_annotation.py里面的annotation_mode=2,运行voc_annotation.py生成根目录下的2007_train.txt和2007_val.txt。
开始网络训练
train.py的默认参数用于训练VOC数据集,直接运行train.py即可开始训练。
训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。我们首先需要去yolo.py里面修改model_path以及classes_path,这两个参数必须要修改。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
b、训练自己的数据集
数据集的准备
本文使用VOC格式进行训练,训练前需要自己制作好数据集,
训练前将标签文件放在VOCdevkit文件夹下的VOC2007文件夹下的Annotation中。
训练前将图片文件放在VOCdevkit文件夹下的VOC2007文件夹下的JPEGImages中。
数据集的处理
在完成数据集的摆放之后,我们需要利用voc_annotation.py获得训练用的2007_train.txt和2007_val.txt。
修改voc_annotation.py里面的参数。第一次训练可以仅修改classes_path,classes_path用于指向检测类别所对应的txt。
训练自己的数据集时,可以自己建立一个cls_classes.txt,里面写自己所需要区分的类别。
model_data/cls_classes.txt文件内容为:
cat
dog
...
修改voc_annotation.py中的classes_path,使其对应cls_classes.txt,并运行voc_annotation.py。
开始网络训练
训练的参数较多,均在train.py中,大家可以在下载库后仔细看注释,其中最重要的部分依然是train.py里的classes_path。
classes_path用于指向检测类别所对应的txt,这个txt和voc_annotation.py里面的txt一样!训练自己的数据集必须要修改!
修改完classes_path后就可以运行train.py开始训练了,在训练多个epoch后,权值会生成在logs文件夹中。
训练结果预测
训练结果预测需要用到两个文件,分别是yolo.py和predict.py。在yolo.py里面修改model_path以及classes_path。
model_path指向训练好的权值文件,在logs文件夹里。
classes_path指向检测类别所对应的txt。
完成修改后就可以运行predict.py进行检测了。运行后输入图片路径即可检测。
预测步骤
a、使用预训练权重
下载完库后解压,在百度网盘下载yolo_weights.pth,放入model_data,运行predict.py,输入
img/street.jpg
在predict.py里面进行设置可以进行fps测试和video视频检测。
b、使用自己训练的权重
按照训练步骤训练。
在yolo.py文件里面,在如下部分修改model_path和classes_path使其对应训练好的文件;model_path对应logs文件夹下面的权值文件,classes_path是model_path对应分的类。
_defaults = {
#--------------------------------------------------------------------------#
# 使用自己训练好的模型进行预测一定要修改model_path和classes_path!
# model_path指向logs文件夹下的权值文件,classes_path指向model_data下的txt
# 如果出现shape不匹配,同时要注意训练时的model_path和classes_path参数的修改
#-----------------------------------------------------
2021-12-27 14:02:53
5.33MB
yolov3