数控恒流源在计量、半导体、传感器等领域得到广泛应用,针对目前市场上大部分恒流源产品精度和智能化水平偏低等问题,提出了一种增量式PID控制的数控恒流源设计方法。该系统通过单片机对恒流源模块的输出进行采样,采用增量式P1D控制算法进行数值处理。并通过Matlab仿真与传统PID控制算法进行对比。实验结果表明其具有分辨率高、纹波小、高精度的特性。 定的电流值是否需要改变。如果需要改变,根据增量式PID控制算法,计算新的输出值。这个算法包括比例项、积分项和微分项的计算,其中比例项反映了当前误差,积分项考虑了误差的历史积累,微分项则预测了误差的变化趋势。计算完成后,通过D/A转换器将数字信号转化为模拟信号,驱动恒流源模块,调整输出电流。同时,系统还会对恒流源的输出进行采样,与设定值比较,形成偏差信号,用于下一周期的控制。 4.2 硬件设计 硬件部分主要包括单片机、A/D和D/A转换器、电源模块、恒流源模块以及负载和显示模块。单片机作为核心控制单元,负责整个系统的协调和运算;A/D转换器将恒流源的模拟输出转换为数字信号供单片机处理,而D/A转换器则将单片机计算出的控制信号转换为模拟信号,驱动恒流源;电源模块提供稳定的工作电压,确保系统的正常运行;恒流源模块根据控制信号调整输出电流,满足负载需求;负载及显示模块则实时显示当前的电流值,便于用户监控和操作。 5 实验验证与效果分析 通过Matlab仿真,比较了增量式PID控制与传统PID控制的性能。结果显示,增量式PID控制具有更高的响应速度,更小的超调量,表明其在精度和动态性能上有显著优势。实际实验中,系统能够快速准确地调整输出电流,纹波小,分辨率高,体现了增量式PID控制的优越性。 6 结论 本文提出了一种基于增量式PID控制的数控恒流源设计,有效解决了现有恒流源产品精度低、智能化程度不足的问题。该设计利用单片机实现精准的电流控制,结合增量式PID算法,提高了系统的响应速度和控制精度,降低了超调,适用于对电流稳定性要求严格的领域。实验和仿真结果证明了该设计的可行性和优越性,为恒流源技术的发展提供了新的思路。
2024-07-30 16:01:04 365KB
1
摘要:设计实用于LED电源的,具有缓启动功能的恒流电子负载,利用负载接入端子V+.V-输入电压,经过稳压输出电路稳压后用于控制经典的模拟恒流负载电路,配合上简单的由RC 延时网络构成的上电延时启动电路.能使负载电流从0 mA缓慢上升至额定电流,再配合由双三极管及电阻电容构成的掉电快速放电电路,保证了下次启动时的延时效果.该设计的具有缓启动功能的恒流电子负载,无需外部供电,直接取电于负载接入电压,无需软件延时和其他硬件延时,实现无源软缓启动,成本低,可以串联和并联使用.在LED电源的老化测试中,替代电阻负载,模拟LED负载,保证LED电源测试无异常.   0引言   在LED 电源老化测试时 【电源技术中的LED电源老化测试用的缓启动恒流电子负载】 在LED电源的老化测试过程中,为了确保电源性能的稳定性和可靠性,通常需要使用适当的负载进行模拟测试。传统的老化测试方法常常采用电阻负载,但这种方法存在一些问题,如无法模拟LED的实际启动特性,可能导致电源在启动时出现异常。因此,设计一种具有缓启动功能的恒流电子负载显得尤为重要。 缓启动恒流电子负载设计的核心在于其能够模拟LED负载的启动过程,避免电流突然增大对电源造成冲击。这种负载设计中,负载接入端子V+和V-接收输入电压,然后经过稳压输出电路进行电压调节,确保控制电路的稳定工作。稳压后的电压被用于驱动经典的模拟恒流负载电路,该电路能够精确地控制负载电流,使其从0毫安逐渐平滑地上升到设定的额定电流值。 为了实现缓启动功能,设计中采用了RC延时网络作为上电延时启动电路。这个网络由电阻R2、R4和电容C2组成,在电源接通时,电容C2的电压逐步增加,使得负载电流平缓上升。同时,利用双三极管Q2、Q3及电阻电容组成的掉电快速放电电路,能够在电源断电后再启动时,快速放掉电容C2的电荷,确保再次启动时能重新实现延时效果,防止电流突变。 此外,该设计还考虑到了成本和使用灵活性,无需外部供电,而是直接从负载接入电压获取能量,减少了额外的硬件成本。电子负载支持串联和并联使用,可以适应不同的测试需求,模拟不同数量的LED负载,确保LED电源在测试过程中不会因电流冲击而出现问题。 掉电快速放电电路中的电阻R3、R8、R9、R10以及电容C7协同工作,确保在电源电压下降到一定阈值时,能有效地触发快速放电过程。在某些设计中,还会加入稳压管D3以优化电压控制,提高电路的稳定性和可靠性。 这种缓启动恒流电子负载可以封装成类似于大功率电阻的形状,便于在实际测试环境中安装和操作。通过并联、串联或混合结构,可以灵活调整负载的电流和功率,以匹配不同规格的LED电源输出。 这种电源技术中的LED电源老化测试用的缓启动恒流电子负载,通过精心设计的电路,成功实现了LED负载的模拟,提供了安全可靠的测试环境,有助于提高LED电源产品的质量控制和性能验证。
2024-07-14 18:48:55 138KB 电源技术
1
【标题解析】 "TL431恒压源恒流源.zip" 这个标题指出,压缩包中的内容主要围绕TL431集成电路,重点在于它的应用作为恒压源和恒流源。恒压源是一种能保持输出电压稳定的电源装置,而恒流源则是能够保持输出电流恒定的设备。在电子工程中,这两种源常用于各种电路设计,确保负载变化时电压或电流的稳定。 【描述解读】 描述中提到的是使用Multisim软件进行的仿真电路设计,这是一个广泛使用的电路模拟工具,版本14.0。该电路的目标是实现一个恒定输出3V电压的系统,这通常意味着TL431将被配置为恒压源,以维持3V的稳定电压输出,不论负载如何变化。 【标签解析】 "TL431" 是一种常见的三端可调稳压器,具有非常精确的参考电压,常用于构建恒压源和恒流源。"multisim" 强调了这个设计是基于虚拟电路仿真平台完成的,对于初学者和工程师来说,这是一个方便的学习和验证理论设计的工具。"恒压恒流源" 提示我们,压缩包可能包含了既能实现恒定电压又能转换为恒定电流输出的电路设计。 【文件内容推测】 压缩包中的"TL431恒压源恒流源" 文件很可能是Multisim电路仿真文件,包含了一个完整的电路模型,其中包括TL431芯片以及必要的外围元件,如电阻、电容等,以实现恒压和恒流功能。电路可能包括两种工作模式:一是将TL431配置为恒压源,提供稳定的3V电压;另一种可能是通过改变电路配置,使其转变为恒流源,可能在不同负载条件下维持特定的电流输出。 详细知识点: 1. **TL431介绍**:TL431是一款精密的三端可调基准电压源,其内部包含一个带隙基准、比较器和一个功率晶体管。它的典型参考电压为2.5V,但可以通过外接电阻进行调整。 2. **恒压源原理**:利用TL431的特性,通过设置一个分压网络(两个外部电阻),使得TL431的阴极电压与参考电压相等,从而保持输出电压恒定。在这个例子中,目标输出电压是3V。 3. **恒流源原理**:当配置为恒流源时,TL431的阳极与阴极之间的电压差将决定通过负载的电流,通过选择适当的外部元件,可以设定所需的电流水平。 4. **Multisim使用**:Multisim是一个强大的电路仿真软件,用户可以在其中搭建电路,模拟电路行为,观察电压、电流波形,进行故障排查,为实际电路设计提供参考。 5. **仿真电路设计**:设计中可能包括输入电源、TL431、反馈电阻、保护电路等部分,以确保在各种负载情况下都能保持输出电压或电流的稳定。 6. **电路分析**:通过Multisim的仿真结果,可以分析电路在不同条件下的性能,如电压稳定性、负载调节率、效率等,以优化设计。 7. **学习应用**:这个电路设计对于理解和实践电源管理、电路保护及电路稳定性等方面的知识非常有帮助,无论是学生还是专业工程师都能从中受益。 这个压缩包提供的资源是一个基于Multisim的TL431电路设计实例,旨在展示如何利用这款芯片实现恒压和恒流功能,对于电子爱好者和学习者来说,是一个宝贵的教育资源。
2024-07-11 11:55:54 311KB TL431 multisim 恒压恒流源
1
恒流-恒压充电器开始时恒流充电,当电池电压升到某一值时变为恒压充电。
2024-05-22 17:05:12 26KB 硬件设计
1
设计了一种数字式精密直流电源,以开关稳压芯片XL4012为基础,以STM8S103K3为控制核心,应用数字控制技术将直流电源与嵌入式系统结合起来。采用D/A给定实现系统逐步调节输出实际值,保证了系统输出的稳定性和精确性。使用键盘输入实现人机交互功能,能够实时显示电压电流值。试验测试结果表明,该系统具有输出稳定性好、控制精度高、操作方便等特点,具有较好的应用价值。
2024-03-20 16:31:17 702KB 直流电源
1
用一块锂电池充电板,改制成一款输出电压、输出电流均可调整的充电器。 电路如附图所示:此锂电池充电板原用于汽车电源给手机7.2V锂电池充电,其充电过程是先恒流充电,再恒压缓充,最后恒压浮充。根据其原理,再增加电源变压器、整流滤波电路、电阻R17~R21、W1、电压表、电流表等元件,使之成为一款输出电压在DC2V~DC15V,输出电流在100mA、200mA、500mA、1.5A四挡可变的充电器。 此充电器整流滤波后的输出电压可在DCl8V~DC36V之间选择。输出电压由W1调节,可以在DC2V~DCl5V范围内变化。如果输出电压要超过15V,需增加C4的耐压值。 输出电流由K2选择控制,如果要输出电流大于1.5A,需增加T1的散热片面积,并将L1的线径加粗。其改制的难点是制作电阻:R18、R19、R20、R21。笔者通过查询得知φ0.13mm漆包线的阻值是1322Ω/km;φ0.21mm的漆包线阻值是506Ω/km,再经计算得出以上电阻所需漆包线长度后,绕制在圆柱形绝缘体上,并在调试中根据输出电流大小修剪漆包线的长度。 经以上改制,此充电
2024-01-13 18:03:26 34KB 锂电池充电板 恒压恒流
1
无极性恒流电刺激器采用了MSP430微控制器,可以根据需要输出各种信号调幅的无极性指数脉冲,而无需更改软件和硬件结构,具有灵活性好、输出电流不受负载阻抗变化、安全可靠的特点; 另外,设计结合了便携式设计方法,采用体积贴装芯片, 也无需外接D/A转换器件、液晶驱动模块等,减小了整机的体积,提高了整机的性价比。
2023-12-20 11:58:29 155KB MSP430 无极性恒流 课设毕设
1
锂离子电池的充电过程可以分为四个阶段:涓流充电(低压预充)、恒流充电、恒压充电以及充电终止。
1
一种高精度恒流源电路的设计与实现,仪器仪表
2023-07-29 11:14:54 216KB 高精度 恒流源
利用stm32实现PID 恒流源控制,基于单片机的pid控制直流电机,C,C++源码
2023-07-20 17:04:17 1.11MB
1