帕金森氏病(PD)是世界上主要的公共卫生疾病之一,其日趋增加,并已对许多国家产生影响。 因此,在疾病早期就进行预测非常重要,因为疾病的症状是在中年或中晚期出现的,因此这对于研究人员来说是一项艰巨的任务。 因此,这项工作着眼于受PD影响的人群的语音清晰度困难症状,并使用各种机器学习技术(例如自适应增强,装袋,神经网络,支持向量机,决策树,随机森林和线性回归)来建立模型。 这些分类器的性能使用各种指标进行评估,例如准确性,接收器工作特性曲线(ROC),灵敏度,精度,特异性。 最后,采用Boruta特征选择技术在预测帕金森氏病的所有特征中找到最重要的特征。
1