我们研究自发CP违规,以解决左右对称理论中的强CP问题。 离散的CP对称性由右手希格斯双峰的复数真空期望值破坏。 类似矢量的沉重夸克夸克与标准模型夸克混合,引入了已知的CP违规,从而实现了Nelson-Barr机制的一种变体。 QCD真空角在回路水平上消失。 讨论了紫外完全理论中小规模三阶化的实现。 我们进一步评论该模型的现象学和未来可测试性。
2024-07-14 18:52:14 231KB Open Access
1
在左-右孪生希格斯(LRTH)模型的框架中,我们考虑了最近一次在LHC上寻找高质子核共振的约束,并发现重中性玻色子ZH的质量低于2.76 TeV。 在这些约束下,我们研究了希格斯-格格勒耦合生产过程e + e-→ZH,e + e-→νeνe¯H和e + e-→e + e-H,上夸克汤河耦合生产过程e + e- →tt¯H,在e + e-对撞机上,希格斯自耦产生过程e + e-→ZHH和e + e-→νeνe¯HH。 此外,我们研究了希格斯玻色子的主要衰变模式,即h→ff′(f = b,c,τ),VV⁎(V = W,Z),gg,γγ。 我们发现LRTH效应相当大,因此e + e-对撞机上的希格斯玻色子过程可能是LRTH模型的敏感探针。
2024-07-03 14:52:48 719KB Open Access
1
在Android开发中,UI设计是至关重要的一环,而 DrawerLayout 是Android SDK提供的一种特殊布局,它主要用于实现类似原生Google应用中的侧滑菜单效果,即常说的“抽屉”效果。这种设计模式使得用户可以方便地从屏幕边缘滑出额外的功能或者导航选项,而不遮挡主要内容,提升了用户体验。下面我们将详细探讨 DrawerLayout 的使用方法和相关知识点。 首先,DrawerLayout 是一个可以容纳两个子视图的布局,其中一个视图作为主要内容,另一个视图作为抽屉。通常,抽屉视图位于屏幕的左侧或右侧,当用户从相应的边缘滑动时,抽屉会滑出显示。在描述中提到的实例中,抽屉效果是通过在主界面上方添加 DrawerLayout 并配置相应的滑动监听来实现的,这样当抽屉打开时,主界面的内容会跟随移动,但并不会被隐藏。 使用 DrawerLayout 需要以下步骤: 1. **在布局文件中添加 DrawerLayout**:在XML布局文件中,使用 `` 标签作为根元素,并包含两个子视图,一个作为主内容视图,另一个作为抽屉视图。 2. **设置主内容视图**:主内容视图通常是一个 `FrameLayout` 或 `LinearLayout`,用于放置应用的主要内容。例如,可以将一个 `Fragment` 添加到 `DrawerLayout` 中的 `content_frame` 布局。 3. **创建抽屉视图**:抽屉视图通常是一个 `NavigationView` 或自定义的布局,包含菜单项或其他功能。在抽屉视图中,可以通过 `android:layout_gravity` 属性设置其在屏幕的左侧("start")或右侧("end")。 4. **滑动监听器**:为了响应用户的滑动操作,需要添加 `OnDrawerSlideListener`、`OnDrawerOpenListener` 和 `OnDrawerCloseListener`。这些监听器可以帮助我们处理抽屉滑出、关闭等事件。 5. **打开和关闭抽屉**:可以通过 `DrawerLayout` 的 `openDrawer()` 和 `closeDrawer()` 方法手动控制抽屉的开关。 6. **设置抽屉指示器**:可以使用 `DrawerLayout` 的 `setDrawerIndicatorEnabled()` 方法来切换系统默认的抽屉指示器(通常是一个汉堡图标)。 在给定的实例中,"DrawMenu" 可能是指抽屉菜单的实现,可能包含了 XML 布局文件以及相关的菜单资源。导入源码后,开发者可以直接运行并查看效果,这对于学习和理解 DrawerLayout 的工作原理非常有帮助。 总结一下,DrawerLayout 是Android UI设计中的一个重要组件,用于实现左右抽屉效果,它可以增强应用的导航体验。通过合理的布局配置和监听事件处理,开发者可以轻松地为自己的应用添加这一功能。在这个实例中,开发者可以直观地看到如何使用 DrawerLayout 来创建一个左右抽屉效果,并从中学习到相关知识。
2024-07-01 11:41:53 1.41MB android UI
1
商家广告牌数据集,一共4G左右,分开上传,需要的可自行下载
2024-06-17 15:27:46 836.34MB 数据集
1
在最近的一篇论文中,我们提出了一种在最小左右对称模型的背景下测试中微子质量的跷跷板起源的系统方法。 该程序的本质是利用轻子数来抵消双电荷标量(位于基于希格斯机制的跷跷板的核心)的衰变,以探测狄拉克中微子质量项,而狄拉克中微子项又直接进入许多物理过程 包括右手中微子向W玻色子的衰变和左手带电的轻子。 在这个较长的版本中,我们将详细讨论这些过程和相关过程,并提供一些缺少的技术细节。 我们还仔细分析了保平汤川部门的物理吸引力的可能性,表明中微子狄拉克质量矩阵可以解析为轻,重中微子质量和混合的函数,而无需借助任何其他离散对称性。 跷跷板机制可以完全解开。 当平价确实打破时,我们表明,在一般情况下,仅狄拉克质量项的厄米部分是独立的,这大大简化了实验性地测试中微子质量起源的任务。 我们通过一些允许简单分析表达式的物理示例来说明该程序。 我们的工作表明,最小左右对称模型是一个独立的中微子质量理论,原则上可以在大型强子对撞机或下一个强子对撞机上进行测试。
2024-03-01 20:31:51 250KB Open Access
1
我们在左右对称理论中讨论风味的对称性。 我们证明,与通常考虑的情况相比,此类框架在建立风味对称模型方面具有不同的环境。 这不仅涉及服从扩大的量规结构的需要,而且还涉及关于残余对称性的更微妙的问题。 此外,如果离散的左右对称是电荷共轭,则应注意风味和电荷共轭对称之间的潜在不一致。 在基于A4的预测模型中,我们分析了最小中微子质量,大气混合角和Dirac CP相之间的相关性,后者更倾向于位于最大值附近。 希格斯(Higgs)双人连体衣不违反轻质风味。
2024-03-01 19:56:21 1.33MB Open Access
1
很有用的东西,两个android ui经常要用到的组件,一个是左右划屏,一个是多点触控放大缩小图片
2024-01-13 10:29:20 4KB java android
1
我们基于量规组SU(3)c×SU(2)L×SU(2)R×U(1)BL研究SUSY左右对称模型的变体。 除了夸克和轻子超场以外,我们仅引入第二个希格斯二重态来产生逼真的费米子质量矩阵。 该模型不包括任何SU(2)R三胞胎。 我们在低能量的单环水平上计算软SUSY参数的重归一化组演化。 我们发现SU(2)R瘦子双峰在低能下获得负质量的平方,因此SU(2)R×U(1)BL→U(1)Y的破坏是通过非零真空实现的 右手中微子的期望值。 通过将中微子与高庚子混合而产生小的中微子质量。 SU(2)R×U(1)BL扇区的质量极限是通过LHC的直接搜索结果以及LEP精度数据中的轻子-高更混合边界获得的。
2024-01-12 16:55:36 261KB Open Access
1
CPU用赛扬D 352 只要400块了 主板么用abit gd8-pro 好超又实惠 而且做工好 显卡么就用7300GS
2024-01-09 13:48:19 23KB
1
1GDDR667 320 硬盘 WD80G SATA 320 再换个电源 搞个垃圾的60块 共1700
2024-01-09 10:36:00 23KB
1