随着电子设备的广泛使用,电磁干扰(EMI)成为了影响设备性能和可靠性的重要因素。在众多对抗电磁干扰的措施中,微波暗室屏蔽效能仿真和EMC电磁屏蔽静区仿真技术的应用显得尤为重要。CST(Computer Simulation Technology)软件作为一种先进的电磁仿真工具,被广泛应用于电磁兼容性(EMC)测试和微波暗室的设计中。微波暗室是一种用于测试电磁特性,如天线方向性、信号发射和接收性能的特殊屏蔽室,它能够有效排除外部电磁干扰,提供一个稳定的测试环境。 在进行微波暗室的屏蔽效能仿真时,通常需要考虑以下几个方面:评估暗室内部所使用的屏蔽材料的屏蔽效能,包括金属材料的种类和厚度,以及屏蔽层的接缝和孔洞等细节对屏蔽效能的影响。仿真分析微波暗室内的电磁场分布,以确保在测试频率范围内,暗室的内部空间满足静区的要求,即空间中的电磁场强度足够均匀,没有明显的电磁波反射和散射。通过仿真优化暗室的设计,以达到最佳的屏蔽效果和最小的暗室尺寸。 此外,EMC电磁屏蔽静区仿真技术不仅对于微波暗室的构建至关重要,也对各类电磁屏蔽设施的设计和优化有着重要意义。在实际工程应用中,静区的仿真是通过模拟电磁波在屏蔽空间内的传播、反射和吸收等物理过程,来预测静区的电磁特性。通过对电磁场的精确仿真,可以提前发现潜在的问题,并在实际搭建之前进行调整,从而节约成本和时间。 CST软件具备强大的仿真能力和直观的后处理功能,可以对电磁场进行三维空间的仿真和可视化,帮助工程师直观理解电磁波在屏蔽空间内的分布情况,并对其性能进行评估。该软件支持高频和低频的电磁仿真,适用于各种电磁屏蔽设计的需要。 除了仿真技术之外,CST软件还提供了丰富多样的优化算法,可以帮助工程师对微波暗室或电磁屏蔽结构进行自动优化,以达到设计指标。这些优化算法包括粒子群优化、遗传算法等,能够快速地寻找到最适宜的结构参数,从而确保电磁屏蔽效能的最优化。 在进行微波暗室屏蔽效能仿真和EMC电磁屏蔽静区仿真时,还应该注意以下几点:仿真模型应尽可能精确地反映实际的物理结构,包括尺寸、材料属性等。仿真过程中需要考虑材料的非线性和频率依赖特性,尤其是在高频应用中。仿真结果的准确性需要通过实验验证,以确保仿真的有效性和可靠性。 通过这些仿真技术的应用,可以有效提高微波暗室和电磁屏蔽结构的性能,降低外部电磁干扰的影响,为电子设备的研发和测试提供更加精确和可靠的环境。
2025-04-09 17:47:20 7.92MB gulp
1
煤矿井下电力系统中,大功率设备的启停、电力系统短路故障、启停开关设备和变频设备,会产生浪涌。本文建立了圆柱形隔爆外壳屏蔽衰减模型,研究了圆柱形隔爆外壳的对浪涌电磁辐射的屏蔽特性,研究结果表明屏蔽外壳对于浪涌电磁辐射具有很强的屏蔽作用,研究结果可为煤矿井下电磁兼容标准制定和矿用电工电子产品设计提供依据。
2024-02-26 20:57:05 1.74MB 隔爆外壳 电磁屏蔽特性
1
屏蔽有两个目的: 一是限制屏蔽体内部的电磁骚扰越出某一区域; 二是防止外来的电磁干扰(骚扰)进入屏蔽体内的某一区域。屏蔽体一般有实芯型、 非实芯型(例如, 金属网)和金属编织带等几种类型, 后者主要用作电缆的屏蔽。各种屏蔽体的屏蔽效果均用该屏蔽体的屏蔽效能来表示。   屏蔽效能表现了屏蔽体对电磁波的衰减程度。由于屏蔽体通常能将电磁波的强度衰减到原来的百分之一至万分之一, 因此通常用分贝(dB)来表述。一般的屏蔽体的屏蔽效能可达 40 dB, 军用设备的屏蔽体的屏蔽效能可达 60 dB, TEMPEST 设备的屏蔽体的屏蔽效能可达 80 dB 以上。   对于屏
1
这个文件,里面的测试方法,主要是法兰同轴腔测试方法,和屏蔽室测试方法。主要对了电磁屏蔽效能的测试方法进行了规范,以及测试装置的指标,甚至给出了具体的制作标准;里面的测试方法,主要是法兰同轴腔测试方法,和屏蔽室测试方法,
2022-11-24 16:37:16 544KB 屏蔽效能测试
1
基于逆向反演法的平板屏蔽效能的分析,王慧霞,张清毅,针对垂直入射均匀平面波平板屏蔽效能,本文采用分析分层媒质的逆向反演法(CPD)。作者论述了逆向反演的基本机理及计算屏蔽效能
2022-06-25 09:00:38 378KB 电磁屏蔽
1
实心材料屏蔽效能的计算 入射波 场强 距离 吸收损耗A R1 R2 SE = R1 + R2 + A+B = R+ A+B B 电磁波在穿过屏蔽体时发生衰减是因为能量有了损耗,这种损耗可以分为两部分:反射损耗和吸收损耗。 反射损耗:当电磁波入射到不同媒质的分界面时,就会发生反射,使穿过界面的电磁能量减弱。由于反射现象而造成的电磁能量损失称为反射损耗。当电磁波穿过一层屏蔽体时要经过两个界面,因此要发生两次反射。因此,电磁波穿过屏蔽体时的反射损耗等于两个界面上的反射损耗的总和。 对于电场波而言:第一个界面的反射损耗较大,第二个界面的反射损耗较小。对于磁场波而言,情况正好相反,第一个界面的反射损耗较小,第二个界面的反射损耗较大。 吸收损耗:电磁波在屏蔽材料中传播时,会有一部分能量转换成热量,导致电磁能量损失,损失的这部分能量称为屏蔽材料的吸收损耗。 多次反射修正因子:电磁波在屏蔽体的第二个界面(穿出屏蔽体的界面)发生反射后,会再次传输到第一个界面,在第一个界面发射再次反射,而再次到达第二个界面,在这个截面会有一部分能量穿透界面,泄漏到空间。这部分是额外泄漏的,应该考虑进屏蔽效能的计算。这就是多次反射修正因子。 源的位置对屏蔽效能计算的影响:如果辐射源在屏蔽机箱的外部(例如,屏蔽是为了机箱内的电路免受外界干扰的影响),则反射损耗和吸收损耗都对屏蔽效能有贡献。如果辐射源在屏蔽机箱内部(例如,屏蔽是为了抑制机箱内的电路辐射),则主要是吸收损耗对屏蔽效能有贡献,因为反射的能量总是在机箱内。
2022-04-28 13:35:16 270KB 综合资料
1
采用基于有限积分方法的电磁仿真软件CST-MWS建立电磁脉冲辐照条件下材料屏蔽效能测试模型,提出脉冲峰值屏蔽效能和脉冲能量屏蔽效能两个方案来评价材料屏蔽能力,并通过仿真分析了电磁脉冲上升时间和脉宽对屏蔽效能的影响。结果表明,脉冲上升时间相对于脉宽对屏蔽效能的影响较大,上升时间越短,屏蔽效能越高,峰值屏蔽效能高于能量屏蔽效能;脉宽对于材料的峰值屏蔽效能基本没有影响,能量屏蔽效能随着脉宽的增大而减小。
1
GJB 5240-2004 军用电子装备通用机箱机柜屏蔽效能要求和测试方法.pdf
2021-09-02 11:33:24 344KB 标准
1
一、屏蔽效能的计算:   屏蔽有两个目的: 一是限制屏蔽体内部的电磁骚扰越出某一区域; 二是防止外来的电磁干扰(骚扰)进入屏蔽体内的某一区域。屏蔽体一般有实芯型、 非实芯型(例如, 金属网)和金属编织带等几种类型, 后者主要用作电缆的屏蔽。各种屏蔽体的屏蔽效果均用该屏蔽体的屏蔽效能来表示。   屏蔽效能表现了屏蔽体对电磁波的衰减程度。由于屏蔽体通常能将电磁波的强度衰减到原来的百分之一至万分之一, 因此通常用分贝(dB)来表述。一般的屏蔽体的屏蔽效能可达40 dB, 军用设备的屏蔽体的屏蔽效能可达60 dB, TEMPEST设备的屏蔽体的屏蔽效能可达80 dB以上。
2021-07-20 15:47:24 876KB 如何计算屏蔽体的屏蔽效能
1
为了计算有孔金属屏蔽箱体的屏蔽效能,根据Robinson算法和电磁拓扑理论,提出了一种基于BLT方程的有孔箱体屏蔽效能分析方法,推导出了屏蔽箱体、孔逢、入射波等参数与屏蔽效能的关系式,并扩展到孔阵、偏心孔以及任意极化角的情形,分析了开孔形状、孔阵的孔间距、孔阵开孔面积以及开孔数量对屏蔽效能的影响。在0~2 GHz范围,对单孔和孔阵箱体的屏蔽效能进行仿真,并与Robinson算法以及CST仿真结果进行了对比,验证了方法的有效性。数值仿真结果表明:开孔面积不变时,开孔数量越多屏蔽效能越好;开孔数量不变时,开孔面积越小屏蔽效能越好;在开孔面积以及开孔数量都不变时,孔阵的孔间距越大屏蔽效能越好。
1