铁轨表面缺损检测数据集是一个针对特定目标检测任务而设计的数据集,包含了4789张标注图片,采用Pascal VOC和YOLO两种通用格式。VOC格式包括jpg格式的图片文件和相应的xml标注文件,而YOLO格式则包括图片文件和txt标注文件。数据集中的图片数量、标注数量与标注类别数均为4789,标注类别分为两类,分别是“Spalling”(脱裂)和“Trilho_bom”(良好)。 “Spalling”类别拥有3198个标注框,而“Trilho_bom”类别拥有3114个标注框,总共6312个标注框。对于标注工具,本数据集采用的是广泛使用的labelImg工具,便于研究人员进行目标检测模型的训练与评估。标注规则是通过在目标物周围绘制矩形框来实现。尽管数据集提供了详尽的标注信息,但制作者特别声明,不对利用该数据集训练出的模型或权重文件的精度提供任何保证。 数据集的准确性和合理性对于机器学习模型的性能至关重要。本数据集的目标检测任务是识别并标注铁轨表面的缺损情况,例如脱裂。这对于铁路维护和安全管理具有实际意义,可以作为自动检测系统的基础数据。通过细致的标注,训练出的模型可以准确识别铁轨表面的缺陷,进而帮助工程师及时进行维护工作,预防可能发生的事故。 此外,该数据集可以被广泛应用于计算机视觉和深度学习领域中的目标检测研究。对于初学者和研究人员而言,这是一个很好的资源,不仅提供了丰富的标注图片,还提供了YOLO格式的标注,该格式在实时目标检测应用中非常流行。数据集还提供了一个标注示例的下载链接,有助于理解数据集的具体结构和内容。 该数据集也具有商业应用潜力,例如铁路检测公司可以使用这个数据集来训练自己的模型,以自动识别铁轨缺陷,提高检测效率和准确性。此外,教育机构和研究者可以通过这个数据集教授和研究目标检测技术,提升学术研究与实践能力。 该铁轨表面缺损检测数据集为相关领域的研究提供了有力的数据支撑,有助于推动技术进步和安全保障。同时,数据集的开放性和易用性也将促进更多创新研究和应用的产生。
2025-08-15 11:35:36 2.29MB 数据集
1
TinyPerson数据集包含1532个样本,所有图片均已标注为VOC xml和YOLO txt两种格式。对于YOLO txt格式的数据,按照训练集、验证集以及测试集进行了划分,配备了相应的data.yaml配置文件,可以直接用于基于YOLO算法的小目标检测任务训练中。 TinyPerson数据集是一项专为小目标检测任务设计的图像数据集,包含了1532个精心挑选的样本,这些样本图片主要关注的是人这一类小型目标。该数据集的一个显著特点是它为图片提供了双格式标注,即VOC xml和YOLO txt两种格式,极大地提升了数据集的可用性和灵活性。VOC xml格式广泛应用于图像识别领域,而YOLO txt格式则是为YOLO(You Only Look Once)算法量身定制的标注格式,非常适合于实时目标检测任务。 在数据集的构成上,TinyPerson数据集考虑到了深度学习模型训练过程中的训练、验证和测试需求。数据集中的样本被合理地划分为训练集、验证集和测试集,这种划分有助于模型开发人员更好地进行模型的训练和评估工作。此外,每一种划分都配备了相应的data.yaml配置文件,这一文件是YOLO系列算法中用于数据加载和配置的重要组件。它包含了图片的路径、标注信息以及其他必要的配置,使得研究人员能够快速启动模型训练过程,无需从头开始配置数据加载部分。 由于YOLO算法在处理小目标检测时具有速度快、准确性高等特点,TinyPerson数据集的出现,使得研究人员能够在这个基础上训练出性能更优的模型,从而在安防监控、无人车辆、机器人视觉等领域有所应用。小目标检测是计算机视觉领域中的一个难点,因为小型目标在图像中占据的像素较少,背景信息复杂,容易被忽略或者识别错误。TinyPerson数据集通过提供丰富的标注数据,有效地解决了这一问题,为研究者们提供了一个宝贵的资源。 数据集的收集工作通常需要大量的时间和精力,尤其是高质量的标注工作,需要专业的标注人员进行。而TinyPerson数据集的标注工作达到了一种高度精细和准确的程度,能够确保研究人员在训练模型时,能够接收到准确的目标位置和类别信息。对于那些需要对小型人物目标进行精确检测的应用场景,如人群计数、行为分析等,TinyPerson数据集无疑提供了一个非常好的起点。 总体来说,TinyPerson数据集是为那些致力于小目标检测任务的研究人员准备的宝贵资源。它不仅提供了丰富的、格式化的标注数据,还通过合理的数据划分和便捷的配置文件,极大地简化了模型训练和评估的前期准备过程。随着计算机视觉技术的不断进步,TinyPerson数据集有望成为相关领域研究的基石之一。
2025-08-14 21:51:52 78.69MB 小目标检测 数据集
1
零售柜零食检测数据集是一个专门用于目标检测领域的大规模数据集,它包含了5422张零售环境中零售柜内零食商品的图片。这些图片采用了两种业界广泛使用的标注格式:Pascal VOC格式和YOLO格式。Pascal VOC格式通过XML文件来标注图片中的目标对象,而YOLO格式则使用txt文件记录目标对象的位置信息。 数据集共计113种不同的零食类别,每种零食类别都配有相应的标注框信息。这包括了各种不同品牌、口味、类型和包装的零食,例如3+2-2、3jia2、aerbeisi、anmuxi、aoliao、asamu等。每一种类别都有对应的标注框数量,比如“3+2-2”类别拥有1733个标注框,“3jia2”类别拥有173个标注框,“aerbeisi”类别有61个标注框,依此类推。这些标注框的目的是为机器学习和计算机视觉算法提供训练样本,以实现对零售柜内零食商品的准确识别和分类。 数据集中的每张图片都配有与其相应的标注文件,确保了数据的一致性和完整性。图片数量与标注文件数量均为5422张,确保了算法训练时不会有数据缺失。此外,标注类别数达到113种,丰富了数据集的多样性,有助于算法学习识别更多种类的商品,提升模型的泛化能力。 零售柜零食检测数据集的推出,将对零售业内的智能监控和商品识别带来积极影响。例如,通过此数据集训练的算法可以应用在自动结账系统、库存管理、商品摆放监测以及销售数据分析等领域。这不仅能够提高零售业的工作效率,减少人力资源成本,同时也为消费者带来了更为便捷的购物体验。 此外,零售柜零食检测数据集的细节信息,如图片的具体名称、标注细节等未在给定的文件内容中直接提及。为了保证数据集的使用效果,研究人员和开发者需要对数据集进行详细的了解和分析,以充分理解各类零食的特性和识别难点。在使用数据集进行目标检测训练时,还应结合实际应用场景,进行相应的预处理、增强等操作,以适应不同的环境变化和需求。 零售柜零食检测数据集是一个具有极高实用价值的资源,它不仅能够推动零售行业的技术创新,还能促进相关学术研究的发展,具有重要的应用前景和研究价值。
2025-08-12 16:50:08 1.41MB 数据集
1
数据集-目标检测系列- 鸭舌帽 检测数据集 cap >> DataBall 标注文件格式:xml​​ 项目地址:https://github.com/XIAN-HHappy/ultralytics-yolo-webui 通过webui 方式对ultralytics 的 detect 检测任务 进行: 1)数据预处理, 2)模型训练, 3)模型推理。 脚本运行方式: * 运行脚本: python webui_det.py or run_det.bat 根据readme.md步骤进行操作。 本篇内容涵盖了关于一个特定目标检测数据集的详细介绍,该数据集专注于鸭舌帽这一特定物品的检测任务。以下是根据提供的文件信息生成的知识点: 1. 数据集概述:数据集名为“数据集-目标检测系列-鸭舌帽检测数据集”,这是DataBall系列中的一个成员。它的目的是为了训练和验证目标检测模型,使其能够准确识别和定位图像中的鸭舌帽。 2. 数据集内容:该数据集可能包含大量的图像文件,这些图像中都有鸭舌帽作为目标物体。为了进行机器学习的训练,这些图像中的鸭舌帽已经被标注,标注的形式为xml文件,这是一种常用的图像标注格式,能够详细描述图像中各个物体的位置和类别信息。 3. 技术栈和工具:该数据集与ultralytics公司的yolo模型(You Only Look Once)相关联,这是一种在目标检测领域广泛应用的深度学习算法。数据集的使用说明提到了一个基于web界面(webui)的工具,允许用户通过网页方式执行模型训练和推理等任务。这表明该数据集旨在简化目标检测模型的训练和部署流程。 4. 模型训练和推理:数据集的使用说明中提到了三个主要步骤:数据预处理、模型训练和模型推理。数据预处理是将原始图像数据转换成模型可以理解的格式,模型训练是指使用标注好的数据集来训练一个深度学习模型,而模型推理则是在训练好的模型上运行新的图像数据,以检测图像中的目标物体。 5. 脚本和操作指南:为了使用该数据集,提供了两个脚本文件:webui_det.py和run_det.bat,分别适用于Python环境和Windows批处理环境。用户需要阅读readme.md文件,按照指南进行操作,以便正确地运行脚本,开始数据集的使用和模型的训练过程。 6. 项目和社区支持:数据集提供了一个项目地址,指向了一个GitHub仓库,这意味着该数据集是开源的,并且可能有一个活跃的开发和用户社区。项目仓库可能包含了完整的文档、代码和问题追踪,为用户提供全面的支持。 7. 应用场景:鉴于鸭舌帽是一个常见的时尚元素,该数据集可能在时尚物品识别、零售库存管理、智能监控等领域有应用价值。通过训练的目标检测模型可以识别场景中的鸭舌帽,进而进行相关的信息提取和处理。 总结而言,这个鸭舌帽检测数据集是为了解决特定目标检测任务而设计的,它提供了一整套工具和指南,使得深度学习领域的开发者和研究人员能够更容易地实现模型的训练和应用。通过开源项目的共享和社区的协作,这个数据集有望推动目标检测技术在特定领域的进步和创新。
2025-08-11 09:20:21 3.16MB 人工智能 yolo检测 python
1
目标检测是计算机视觉领域的重要任务之一,它旨在识别出图像或视频中所有感兴趣的目标,并确定它们的位置和类别。在本篇文章中,我们重点介绍了一个针对战斗飞机目标检测任务而构建的数据集,该数据集包含了15292张经过增强处理的图片,遵循YOLO和VOC两种格式进行标注。 数据集采用VOC格式与YOLO格式相结合,包含了三个主要的文件夹:JPEGImages、Annotations和labels。JPEGImages文件夹内存储了15292张jpg格式的图片,它们是目标检测任务中识别对象的图像来源。Annotations文件夹内包含了与图片相对应的xml标注文件,这些文件记录了图片中对象的位置以及标注信息。Labels文件夹则包含了与YOLO格式相对应的txt标注文件,它们同样用于指导模型进行目标检测。 数据集中的标签仅包含一种,即“fighter”,代表了我们的目标是检测战斗飞机。标签种类数虽然只有1种,但总共的标注框数达到了19477,这表明数据集中有许多战斗飞机的实例,因此丰富了数据集在战斗飞机目标检测这一任务上的表现能力。标注框的形状为矩形框,这在目标检测领域是常见的标注形式,有助于模型对目标的精确定位。 本数据集特别强调,图片的清晰度是符合要求的,且所有图片都已经过增强处理。图片增强是指通过各种技术手段改善图像质量,包括调整亮度、对比度、添加噪声、旋转、翻转等,以提升模型的泛化能力,使其能更好地处理各种条件下的目标检测任务。 数据集的分辨率高度清晰,这对于目标检测算法来说至关重要,因为目标的细节信息有助于模型准确地识别出目标。数据集还特别声明,图片经过了增强处理,这对于提高模型在现实世界中的实用性和鲁棒性有非常积极的作用。 数据集的类型被特别标注为“150m”,这可能是对数据集质量或者特定应用场景的说明,具体含义需要结合实际背景来解释。需要强调的是,该数据集不保证任何训练模型或权重文件的精度,仅仅保证标注的准确性和合理性。这是一个非常重要的声明,它提醒用户在使用数据集时,应当有适当的预期,并且能够对数据集进行进一步的质量检验和验证。 这个经过增强处理的15292张战斗飞机数据集,采用YOLO和VOC两种格式,具有清晰的图片质量和数量巨大的标注框,为研究者和开发者提供了一个宝贵的资源,用以训练和测试战斗飞机目标检测模型的性能。通过该数据集,可以有效地提升目标检测算法在特定场景下的识别能力,对提高目标检测技术的实际应用价值有着重要的意义。
2025-08-10 22:15:25 4.27MB 数据集
1
在当前迅速发展的计算机视觉领域中,目标检测技术是基础且关键的组成部分。本篇文档介绍的是一套特定的数据集——天空小目标数据集,特别针对飞机的检测,总共包含了1103张标记图像。这套数据集采用两种主要格式:VOC格式和YOLO格式,以适应不同目标检测框架和算法的需求。 数据集文件结构十分清晰,包含了三个关键的文件夹:JPEGImages、Annotations和labels。JPEGImages文件夹中存储了所有的jpg格式图片,共计1103张,这些图片都是从天空的场景中捕获,专门用于检测其中的小目标——飞机。Annotations文件夹则存放了与图片对应的标注信息,每个图片对应一个xml文件,记录了图像中目标的位置和类别等信息,总计也有1103个。最后的labels文件夹包含了txt格式的标签文件,每个图片对应一个txt文件,其中记录了目标的具体类别信息。 在标签方面,该数据集专注于一类目标,即飞机,因此标签种类数为1。对应的,标签名称为"airplane"。值得注意的是,虽然数据集中仅包含一种标签,但标注的飞机实例框数却高达2096个,这样的设计可能是为了更好地捕捉飞机在不同大小、角度、遮挡情况下的变化,从而提高目标检测的鲁棒性和准确性。 就图片质量而言,本数据集保证了图片的清晰度,具体分辨率虽然未提及,但可预期的是较高的分辨率能够提供更多的细节,便于算法进行特征提取。同时,文档中明确指出图片没有经过增强处理。在目标检测领域,不同增强方法可能会引入额外的变量,影响模型训练的一致性和最终性能评估的准确性。 目标的标注形状为矩形框,这是目标检测中常用的标注方法,它简洁明了地表达了目标的位置和大小信息。这些矩形框被用来定义“真实边界框”(ground truth bounding box),为训练目标检测模型提供了关键的指导。数据集包含的具体标注细节,如框的位置坐标等,虽未详细展示,但可以想象每个xml文件会精确地给出目标的详细标注信息。 文档特别指出,本数据集不保证对训练模型或权重文件的精度有任何保证。这意味着,尽管数据集提供了准确且合理标注的数据,但模型的最终性能还需依赖于训练过程和所选用的算法。这样的声明既反映了数据提供者对数据质量的自信,也避免了使用者对数据集性能的误解。 在实际应用中,这套数据集可以被用于训练和测试各种目标检测模型,例如基于深度学习的卷积神经网络(CNN),或者传统的机器学习方法。鉴于数据集的特定性,它特别适合用于航空、国防或安全监控领域的相关研究和开发工作。这套数据集的发布,无疑为相关领域的研究者和工程师提供了宝贵的资源,有助于推动目标检测技术在特定场景中的发展和应用。
2025-08-10 22:14:30 1.02MB 数据集
1
茶叶病害检测数据集是一项专门针对茶叶病害进行目标检测的数据集,其数据集格式包括Pascal VOC格式和YOLO格式。该数据集包含了9591张jpg格式的图片和与之对应的标注文件,标注文件包含VOC格式的xml文件和YOLO格式的txt文件。图片数量、标注数量以及VOC格式和YOLO格式的标注文件数量均为9591份,说明每个图片都配有相应的标注信息。 标注类别数为8,具体类别名称分别为:“Black rot of tea”(茶黑斑病)、“Brown blight of tea”(茶褐色斑病)、“Leaf rust of tea”(茶叶锈病)、“Red Spider infested tea leaf”(茶红蜘蛛侵染叶片)、“Tea Mosquito bug infested leaf”(茶小绿叶蝉侵染叶片)、“Tea leaf”(茶叶)、“White spot of tea”(茶白星病)、“disease”(病害)。各类别标注的框数不一,其中“Red Spider infested tea leaf”标注框数最多,为1022个,而“Brown blight of tea”标注框数最少,为8个。所有类别总计标注框数为12812个。 使用标注工具为labelImg,该工具是一种常用的图像标注软件,支持绘制矩形框来标注目标对象。由于数据集采用矩形框进行标注,这意味着目标检测模型在处理时将针对病害区域进行定位和分类。 数据集的标注规则是针对不同病害类别进行画矩形框标注。每个矩形框对应一个目标病害实例,并且包含病害的类别信息。这种标注方式使得模型训练后可以对茶叶图像中的病害区域进行检测,并识别出病害的种类。 本数据集未提供图片预览,但标注例子的缺失可能暗示在使用该数据集时,使用者需要自行查看图片和标注文件以获取理解。需要说明的是,数据集不对训练模型或者权重文件的精度作任何保证,这意味着使用该数据集训练得到的模型精度可能因实际情况而异,用户需自行负责模型的评估和调优。 此外,重要说明部分为空,说明作者没有给出额外需要注意的信息。但是,标注例子的缺失可能暗示在使用该数据集时,使用者需要自行查看图片和标注文件以获取理解。需要说明的是,数据集不对训练模型或者权重文件的精度作任何保证,这意味着使用该数据集训练得到的模型精度可能因实际情况而异,用户需自行负责模型的评估和调优。 茶叶病害检测数据集为研究者和开发者提供了丰富的图像和标注信息,用于训练和测试目标检测模型,从而实现对茶叶病害的自动识别和分类。该数据集对于推动智能农业和精准植物保护具有潜在的积极作用,尤其是在提升茶叶生产的质量和效率方面具有重要意义。
2025-08-07 09:34:02 4.2MB 数据集
1
内陆淡水鱼分类检测数据集的知识点主要包括以下几个方面: 1. 数据集的基本信息:数据集包含2857张图片,这些图片是针对12种内陆常见的淡水鱼所进行的目标检测标注。图片遵循VOC格式,并以YOLO格式进行标注,这意味着该数据集适合用于训练和测试基于YOLO算法的目标检测模型。 2. 数据集文件结构:数据集主要包含三个文件夹,分别用于存放不同类型的文件。JPEGImages文件夹存储了所有的jpg格式图片文件, Annotations文件夹存放了与图片对应的标注文件,这些标注文件为xml格式,用于描述目标检测框的位置和标签信息。labels文件夹中包含了txt格式的标签文件,这些文件记录了对应目标框的类别索引。 3. 标签类别和数量:该数据集包括12种淡水鱼的分类标签,它们分别是草鱼(caoyu)、黑鱼(heiyu)、鲫鱼(jiyu)、链鱼(lianyu)、罗非鱼(luofeiyu)、鲈鱼(luyu)、鲶鱼(nianyu)、青鱼(qingdaofu)、小黄鱼(xiahuyu)、鲟鱼(xunyu)、鱼(yongyu)、子鱼(ziyu)。每个标签的框数不同,如草鱼有3个检测框,而小黄鱼则有614个检测框。总共有3164个目标检测框用于标注。 4. 图片质量与增强:图片均为清晰图片,分辨率为像素级别,具有良好的视觉识别度。但数据集中的图片并未进行额外的图像增强处理。 5. 标注说明:标注的方式是矩形框,用于目标检测任务中的目标识别和位置定位。这些矩形框的标注是准确且合理的,能够为模型训练提供有效的识别信息。 6. 使用注意事项:数据集的制作者明确指出,对于数据集训练得到的模型或权重文件的精度不作任何保证。数据集的使用者在使用该数据集时需要清楚这一点,并自行负责模型的开发和训练过程。 7. 数据集的应用:这个数据集非常适合用于计算机视觉领域的研究和应用,尤其是深度学习模型的训练,可以用于提高目标检测算法在淡水鱼类识别方面的性能。 8. 数据集的推广和研究价值:该数据集将有助于淡水渔业管理、生态系统监控以及智能渔业技术的发展,为相关领域的研究人员和从业者提供了一个宝贵的资源。 【目标检测】12种内陆常见淡水鱼分类检测数据集为研究人员提供了丰富的标注图片资源,对于提升和优化目标检测算法在特定场景下的识别精度具有重要作用。通过对这些标注数据的学习,可以更好地构建和训练深度学习模型,进而应用于更多与水生生态系统监测相关的项目和研究中。
2025-08-05 21:27:17 6.09MB 数据集
1
一、基础信息 • 数据集名称:电子产品与办公用品目标检测数据集 • 图片数量: 训练集:35张图片 验证集:10张图片 测试集:5张图片 总计:50张图片 • 分类类别: 充电器(cargador)、笔记本充电器(cargadorlaptop)、手机(celular)、笔记本(cuaderno)、笔(lapicero)、钥匙(llave)、游戏手柄(mandoplay)、硬币(moneda)、鼠标(mouse)、键盘(teclado) • 标注格式:YOLO格式,包含边界框和类别标签,适用于目标检测任务。 • 数据格式:JPEG图片,来源于实际场景。 二、适用场景 • 办公自动化系统开发:用于检测办公桌物品如鼠标、键盘和笔记本,帮助构建自动化库存管理或设备监控系统。 • 零售和消费电子应用:识别电子产品如手机、游戏手柄和充电器,用于智能零售货架管理或商品识别解决方案。 • 智能家居设备集成:检测日常物品如钥匙、硬币和笔,实现家居环境中的物体定位和智能提醒功能。 • 教育和原型测试:适合快速构建目标检测模型,用于教学演示或轻量级AI应用开发。 三、数据集优势 • 多样化的类别:覆盖10个常见办公和生活用品类别,包括电子设备和日常物品,提供丰富的目标检测对象。 • 简洁易用:数据量轻量,适合快速实验和原型开发;YOLO格式兼容主流深度学习框架,可直接用于模型训练。 • 实际场景适配:数据来源于真实环境,适用于自动化、库存管理等实际任务,提升模型泛化能力。
2025-08-04 16:59:20 70.16MB yolo
1
道路缺陷数据集是针对目标检测领域,特别是道路缺陷识别任务而设计的一组训练和测试数据。这些数据集以VOC格式和YOLO格式提供,每种格式都包含有图片和对应的标注文件,共计5000张jpg格式的图片及其标注。VOC格式的标注包含XML文件,YOLO格式则包含TXT文件。数据集涵盖了八种道路缺陷类别,分别是井盖、修补网、修补裂缝、坑洼、裂缝、修补坑洼、网状结构及其他。这些类别对应于道路养护和维护工作中的常见问题。每种类别都有相应的矩形框标注,用以指定图像中缺陷的具体位置。例如,裂缝类别中,共有1656个矩形框标注,而井盖类别中则有4164个标注,每张图片可能包含多个缺陷类别,因此总框数为10776。 该数据集使用了labelImg这一常用的图像标注工具来完成所有图片的标注工作,标注工具的选择保证了标注的准确性和一致性。标注规则规定,对于每一种缺陷类别,都应画出矩形框来明确缺陷的位置。整个数据集的标注工作严格按照这个规则来执行,确保了数据的质量和可用性。 数据集的具体结构包括5000个jpg格式的图片,5000个VOC格式的XML标注文件和5000个YOLO格式的TXT标注文件。每张图片都有一对对应的XML和TXT标注文件,其中XML文件详细描述了图片中每个缺陷的位置和类别信息,而TXT文件则提供了相同信息,但格式适用于YOLO系列的目标检测模型。这种格式的兼容性使得数据集可以广泛应用于深度学习和计算机视觉的实验研究。 需要注意的是,尽管该数据集提供了大量的标注数据,但制作者明确指出不对由该数据集训练得到的模型或权重文件的精度作任何保证。这样的声明提醒使用者,虽然数据集提供了准确且合理的标注,但模型训练和验证结果还受到多种因素的影响,包括模型的选择、训练策略、数据增强技术等。 这个道路缺陷数据集为研究人员和工程师提供了一个宝贵的资源,用于研究和开发能够自动识别和分类道路缺陷的算法。这样的技术对于实现道路智能巡检、自动化维护规划等领域具有重要意义,有助于提高道路维护工作的效率和质量。
2025-07-31 17:15:13 732KB 数据集
1