最新整理国内各高速公路车流数据集大全,包含国内主流的高速公路,数据列包含高速路段名称 车速 车流量 事故率 主要车型 天气 收费价格。
2025-07-12 00:35:55 2.38MB
1
建筑物损坏缺陷识别检测数据集是一种专门为了训练计算机视觉模型而准备的资料集合。这些数据集一般包含了大量与建筑物损坏相关的图片以及相应的标注信息,用于训练模型识别和定位建筑物的不同损坏类型。这些损坏可能包括裂缝、剥落、结构变形、锈蚀、渗漏等各种建筑病害。在建筑行业,这样的数据集对于提高建筑安全性、进行结构健康监测以及预防性维护等方面具有重要价值。 yolo模型是一种流行的深度学习目标检测算法,能够实时地从图像中识别和定位目标对象。它通过在图像中划分网格并预测每个网格中的目标边界框和类别概率来工作。该模型训练完成后,能够在新的图像中检测并识别出与训练数据集相似的建筑物损坏缺陷。 在本数据集中,图像文件通常以.jpg或.png格式存在,每张图像对应一个或多个损坏缺陷。而labels文件则以.txt格式存储,里面包含了对应图像中每个损坏缺陷的位置和类别信息。这些标注信息用于训练时让模型了解每一个目标应该在图像中的什么位置以及它们是什么。 为了方便使用,该数据集可能还包含了格式转换脚本。这些脚本的作用是将标注文件转换成适用于yolo模型训练的特定格式,或者用于将数据集中的图像转换为模型训练所需要的分辨率。这样的转换工作对于数据预处理非常重要,可以确保模型训练的有效性和准确率。 使用这些数据集和脚本训练出来的模型,可以被集成到各种应用中,如无人机建筑巡检、移动设备现场评估以及安全监控系统中。它们能够快速检测并报告出建筑结构的健康状况,为建筑维护工作提供技术支持。 这种数据集的广泛使用,不仅提高了建筑物检测的效率和准确性,还能够在某些情况下避免人为的疏漏。随着技术的进步,基于深度学习的建筑物损坏缺陷识别技术将会变得越来越精确,越来越智能,这将在保障人民生活安全和财产安全方面发挥更大的作用。 此外,这些数据集在学术界和工业界都有广泛的应用。研究人员可以使用这些数据集来测试新的算法或者改进现有算法的性能。在工业界,它们可以被集成到更复杂的系统中,为建筑物的定期检查和维护提供帮助。通过精确的缺陷检测,能够帮助工程师评估建筑物的寿命和安全性,预防可能的灾难性事故。
2025-07-11 08:53:03 387B yolo 建筑物损坏
1
人脸面部表情识别数据集文件.zip 人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识别数据集文件.zip人脸面部表情识
2025-07-10 21:54:28 849.41MB 数据集
1
用于脑肿瘤检测的脑部 MRI 图像 用于脑肿瘤检测的脑部 MRI 图像 用于脑肿瘤检测的脑部 MRI 图像 用于脑肿瘤检测的脑部 MRI 图像 用于脑肿瘤检测的脑部 MRI 图像 用于脑肿瘤检测的脑部 MRI 图像 用于脑肿瘤检测的脑部 MRI 图像
2025-07-10 16:22:00 15.1MB 数据集
1
内容概要:该数据集专注于灭火器检测,包含3255张图片,每张图片均进行了标注。数据集提供了两种格式的标注文件,分别是Pascal VOC格式的xml文件和YOLO格式的txt文件,确保了不同需求下的兼容性。所有图片为jpg格式,标注工具采用labelImg,通过矩形框对单一类别“extinguisher”进行标注,总计标注框数为6185个。数据集旨在支持计算机视觉领域的研究与开发,特别是针对物体检测任务,提供了高质量的标注数据; 适合人群:从事计算机视觉研究或开发的技术人员,尤其是专注于物体检测领域,如安防监控、智能消防系统的研发人员; 使用场景及目标:①作为训练集用于深度学习模型的训练,提升模型对灭火器识别的准确性;②用于测试和验证已有的检测算法性能; 其他说明:数据集不对基于其训练出的模型精度做保证,但承诺提供准确合理的标注。数据集仅含图片及对应的标注文件,不包括预训练模型或权重文件。
2025-07-10 16:05:10 1.39MB 数据集 VOC格式 labelImg
1
智慧交通火车站乘客上车物品遗落检测数据集是为智能交通系统开发而设计的数据集,其中包含了大量的火车站乘客上车时可能遗落物品的图片数据。这一数据集采用了Pascal VOC格式和YOLO格式两种通用的机器学习和计算机视觉标注格式,方便研究人员和开发者进行训练和测试。 数据集共包含2270张jpg格式的图片,每张图片都配有相应的标注信息。标注信息包括VOC格式的xml文件和YOLO格式的txt文件。这些标注文件详细描述了图片中物体的位置和类别,为机器学习模型提供了准确的训练数据。 标注的类别共有六种,分别是:书包(backpack)、自行车(bicycle)、手提包(handbag)、电动滑板车(scooter)、婴儿车(stroller)和行李箱(suitcase)。在所有标注的物体中,每种类别对应的矩形框数量各不相同,书包最多,达到1012个框,自行车最少,只有58个框。而所有物体的总框数为5184个。 数据集使用了labelImg这一流行的标注工具进行标注工作。标注过程中遵循了一定的规则,即对每类物体进行矩形框标注。矩形框用于标注每个物体在图片中的位置,是物体检测中非常重要的一步。矩形框的数量分布说明了数据集中各类物体出现的频率差异,这对于训练模型来说是非常重要的信息,因为模型的性能在很大程度上取决于数据的多样性和平衡性。 虽然数据集提供了丰富和准确的标注图片,但是数据集的制作者明确指出,对使用该数据集训练出的模型或权重文件的精度不作任何保证。这意味着,虽然数据集本身是高质量的,但模型训练的结果仍需通过实际应用和测试来验证。研究人员在使用该数据集时应当注意这一点,并结合自身的研究目标进行适当的调整和优化。 此外,数据集的提供者并没有在说明中提及对数据集的任何特别声明,也未提及数据集的具体来源和收集方法。对于数据集的使用,用户需要自行下载,并可参考数据集的预览和标注示例,以便更好地了解数据集内容。 该数据集的下载地址为“download.csdn.net/download/2403_88102872/90058809”,用户可以通过这个地址下载数据集进行研究和开发工作。
2025-07-10 16:00:09 1.04MB 数据集
1
样本图:blog.csdn.net/2403_88102872/article/details/144143813 文件太大放服务器下载,请务必到电脑端资源详情查看然后下载 数据集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):2270 标注数量(xml文件个数):2270 标注数量(txt文件个数):2270 标注类别数:6 标注类别名称:["backpack","bicycle","handbag","scooter","stroller","suitcase"] 每个类别标注的框数: backpack 框数 = 1012 bicycle 框数 = 58 handbag 框数 = 4042 scooter 框数 = 51 stroller 框数 = 1 suitcase 框数 = 20 总框数:5184 使用标注工具:labelImg 标注规则:对类别进行画矩形框 重要说明:暂无
2025-07-10 15:55:52 407B 数据集
1
中文医学领域问答微调数据集是一份专门为医疗健康领域设计的问答系统训练资源。这份数据集包含大量经过精心筛选的医疗问题以及相对应的专业答案,旨在提升问答系统在医疗领域的理解和回应能力。数据集中的问题覆盖广泛,包括常见疾病、治疗方法、药品信息、医学检验、健康咨询等各个方面。每个问题都配有相应的答案,这些答案由专业医生或者具有医学背景的专家提供,确保了答案的专业性和准确性。通过微调,可以将通用的问答模型针对特定领域进行优化,使其更好地理解和回应医疗领域内的问题。这项工作对于提高医疗健康领域的智能问答质量具有重要意义。微调不仅限于改善问答系统的语言理解能力,还可能包括对医学专业术语的识别、医学知识的推理逻辑等深入层面的优化。此外,由于医疗信息高度敏感,这份数据集的创建和使用都严格遵守数据保护法规,确保患者隐私不被泄露。这份数据集可以应用于多种场景,如医疗咨询机器人、在线健康服务平台、医疗信息检索系统等,以帮助提升服务质量,减轻医务人员的工作负担,并最终提高医疗服务的整体效率和患者的满意度。 医疗问答系统的微调涉及多个方面,包括但不限于数据预处理、模型选择、训练策略、评估标准等。预处理步骤包括数据清洗、规范化、去重等,以提高数据质量。模型选择时需要考虑模型是否能够准确理解和处理医学专业术语和复杂的医学逻辑。训练策略需要考虑怎样有效地利用有限的标注数据对模型进行训练,以达到较好的性能表现。评估标准则需要根据医疗问答的特点,制定出合适的准确率、召回率、F1值等指标。微调的目标是使问答系统能够在特定领域内达到接近人类专家的水平,从而提供准确可靠的医疗咨询服务。 医疗问答系统的微调还需要重视持续更新和维护。医学知识是不断进步和更新的,新的治疗方法、药品、诊断技术等信息需要及时纳入数据集中,并相应更新问答系统的知识库。此外,微调过程中需要不断地进行测试和评估,以确保问答系统能够适应新的医疗知识和临床实践。这就要求数据集要有一定的灵活性和扩展性,能够方便地添加新知识和应对医学领域的变化。在实际应用中,医疗问答系统微调的成功也依赖于与医疗人员和用户的互动反馈,这些反馈可以帮助进一步优化问答系统,使其更加贴合实际使用需求。通过这些方法,医疗问答系统能够更好地服务于广大患者,为医疗领域注入新的活力,提高整个社会的医疗保健水平。 医疗问答系统的微调过程具有显著的社会价值。它能够提供即时准确的健康信息,帮助人们更好地理解和处理自身的健康状况,减少不必要的医疗焦虑。通过自动化问答系统,可以大量节约医生的时间,使他们能够将精力集中在需要面诊的复杂病例上,优化医疗资源配置。这样的系统在公共卫生事件中能发挥重要作用,如在突发疫情时,提供快速的健康咨询和指导,缓解医疗系统的压力,提高公共卫生事件的应对能力。中文医学领域问答微调数据集的开发和应用,对推动医疗信息化进程,提升医疗服务质量,促进公共卫生水平具有不可忽视的贡献。
2025-07-08 20:53:02 554.39MB
1
在电力系统中,变压器作为关键设备,承担着电压转换与电力分配的重要任务。为了确保变压器能够安全稳定运行,监测其冷却油中的溶解气体状况是不可或缺的预防性维护措施。溶解气体分析(Dissolved Gas Analysis, DGA)是一种广泛应用于电力变压器状态监测的技术,它能够有效地检测出变压器内部可能出现的故障。通过对变压器油中的气体进行采样分析,可以及时发现变压器内部是否出现过热、放电等问题,从而避免重大的电力故障。 本数据集包含了英国某电站13台变压器在2010年至2015年期间的冷却油中溶解气体分析数据。该电站的数据分析工作对于评估变压器运行状况、制定维修计划、预测设备寿命以及改进电网运行效率都具有重要的参考价值。 在DGA分析中,主要关注的气体包括氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)、甲烷(CH4)、乙烷(C2H6)、乙烯(C2H4)、乙炔(C2H2)等。不同种类的气体以及它们在油中含量的变化,可以指示变压器内部不同的故障类型。例如,氢气和甲烷的增加可能表示绝缘材料的老化或降解,乙炔的产生通常与电气放电有关,而CO和CO2的含量变化则可能反映变压器油和绝缘纸的热分解情况。 根据DGA结果,可以运用多种方法和标准对变压器的状态进行评估,如Roger标准、Duval三角法、IEC标准等。这些评估方法可以将溶解气体数据转化为对变压器内部故障的定量分析,帮助工程师准确地判断变压器是否存在潜在故障,并采取相应的措施。 此外,通过长期收集和分析变压器的DGA数据,还可以观察到变压器运行状态随时间的变化趋势,从而进行故障预警和风险评估。通过对历年的数据进行比较,可以发现变压器性能的变化规律,为变压器的检修周期调整、备件更换计划制定以及维护策略的优化提供数据支持。 在数据集中,每一台变压器的DGA数据都应独立记录,并包含每次采样的具体时间点。这样的时间序列数据不仅有助于分析单台设备的状态,也可以用于整个电站变压器群体的健康监测。通过大数据分析手段,可以从中发现共性问题,为整个电力系统的安全性和可靠性提供保障。 本数据集为变压器运行和维护人员提供了一种强有力的工具,不仅有助于及时发现和处理变压器可能发生的故障,也为电力系统的长期规划和运行管理提供了重要的参考数据。通过科学合理的数据解析与应用,可以显著降低电力系统的故障率,提高供电质量和可靠性。
2025-07-07 20:17:03 4.11MB 数据集
1
matlab终止以下代码HCP扩散DCM实验 目录 关于 该项目 该项目是我在昆士兰州脑研究所的博士与我的主管玛塔·加里多博士和杰森·马汀利教授合作的第二个实验。 现在已在eLife中发布: McFadyen,J.,Mattingley,JB,和Garrido,MI(2019)。 从枕骨到杏仁核的传入白质通路有助于恐惧识别。 eLife,8,e40766。 我们的研究问题是,“有什么证据表明人体内杏仁核存在结构性皮下途径?” 数据 为了充分回答这个问题,我们利用了免费提供的人类Connectome项目()。 我们使用了S900版本,其中包含大约900名年龄在18至35岁之间的参与者,他们参加了HCP的一系列测试。 所有参与者的数据均在美国圣路易斯的华盛顿大学收集。 S900版本中的数据存储在高性能计算平台上,该平台位于澳大利亚墨尔本的莫纳什大学。 与澳大利亚研究委员会的隶属关系使之成为可能。 由于该项目的计算量很大,因此我们对M3进行了分析,还通过将数据从M3传输到澳大利亚布里斯班昆士兰大学昆士兰大脑研究所的集群计算系统进行了分析。 我们被允许潜在地识别人口统计信息,以便我们可以获得与
2025-07-07 18:20:48 1.58MB 系统开源
1