GANCER:计算有效放射疗法的生成对抗网络 论文代码《使用生殖对抗网络进行放射治疗中的自动化治疗规划》,已提交给2018年医疗保健中的机器学习。 基于知识的计划(KBP)是一种放射疗法治疗计划的自动化方法,该方法包括先预测所需的治疗计划,然后再将其纠正为可交付的计划。 在这项工作中,我们提出了GAN方法来预测理想的3D剂量分布。 此代码包含专门用于GAN的实现。 我们将在以后的更新中提供用于优化的代码。 请注意,原始论文中使用的数据集无法公开共享。 这将在以后的更新中解决,我们将提供一个综合数据集。 另外,您可以使用公共数据集,例如 ,只要您适当地修改数据加载器即可。 先决条件 Linux或OS X 的Python 3 CPU或NVIDIA GPU + CUDA CuDNN 入门 安装 设置pipenv虚拟环境并输入 pipenv install --dev --three pi
2025-10-10 23:44:41 197KB Python
1
生成式对抗网络(GAN)是一种深度学习模型,由Ian Goodfellow于2014年提出,主要用于非监督学习环境。GAN由两部分组成,一个是生成器(Generator),另一个是判别器(Discriminator),这两个网络通过互相竞争的方式共同进化。 生成器的任务是创造出新的、逼真的数据样本,这些样本需要与训练数据集中的样本尽可能相似。生成器通过接收一个随机噪声向量作为输入,并通过一个深度神经网络进行参数化变换,输出生成的数据样本。生成器的关键挑战是需要捕获训练数据集中的隐含数据分布规律,使得生成的样本能够被人类或其他机器学习算法判断为真实的。 判别器的任务则恰恰相反,它的目标是区分真实数据和生成器生成的假数据。判别器通过学习训练数据集的特征,能够给出输入数据为真实的概率。判别器和生成器一样,也是一个深度神经网络。在训练过程中,判别器要不断调整自身参数,以提高对真实数据与假数据的判别能力。 GAN的核心思想是通过让生成器和判别器进行对抗式训练,使得生成器不断学习如何产生更加逼真的数据,而判别器则学习如何更准确地区分真假数据。在理想情况下,这种训练过程将会持续进行,直到生成器生成的数据与真实数据几乎无法区分。 GAN解决了一个非监督学习中的难题,即在没有标注数据的情况下如何学习数据的内在规律。GAN能够应用于图像生成、风格转换、数据增强等多种场景。然而,GAN也存在一些固有的问题和挑战,比如训练的不稳定性、模式崩溃(mode collapse)等问题。 在低维数据情况下,可以使用简单的概率模型,比如高斯分布来拟合数据分布。但在高维数据情况下,如图像数据,事情会变得更加复杂。图像数据的复杂性要求生成器和判别器必须能够处理复杂的数据结构和高度的特征相关性。 生成式对抗网络在实际应用中还包括多种变体和改进版本,例如深度信念网络(DBN)和受限玻尔兹曼机(RBM)。这些模型通常会使用更加复杂的概率图模型来表示数据的生成过程。 在GAN的损失函数方面,通常使用交叉熵损失。对于判别器,损失函数是判别器正确区分真伪样本的能力的度量;而对于生成器,损失函数是判别器误判生成样本为真实样本的概率。 GAN的训练过程类似于零和博弈,生成器和判别器之间的竞争导致了一种动态平衡状态。当判别器对生成器的输出进行更准确的分类时,生成器需要进一步改进以提高欺骗判别器的能力。反之亦然。整个过程是动态且迭代的。 在GAN训练过程中存在两大问题,一是梯度消失问题,二是优化目标的荒谬性和梯度不稳定问题。这些问题导致GAN训练的难度增加,特别是对于生成器来说,往往会导致模式崩溃的问题。模式崩溃是指生成器生成的数据变得过于相似,失去了多样性。 GAN是一种极具潜力的机器学习模型,尽管存在一些挑战和问题,但其在图像生成、风格转换和数据增强等领域的应用前景十分广阔。
2025-10-03 13:49:42 3.46MB
1
基于wasserstein生成对抗网络梯度惩罚(WGAN-GP)的图像生成模型 matlab代码,要求2019b及以上版本 ,基于Wasserstein生成对抗网络梯度惩罚(WGAN-GP); 图像生成模型; MATLAB代码; 2019b及以上版本。,基于WGAN-GP的图像生成模型Matlab代码(2019b及以上版本) 生成对抗网络(GAN)是深度学习领域的一个重要研究方向,自从2014年Ian Goodfellow等人提出以来,GAN已经取得了许多显著的成果。GAN的核心思想是通过一个生成器(Generator)和一个判别器(Discriminator)相互竞争的过程,来学习生成数据的分布。生成器的任务是生成尽可能接近真实数据的假数据,而判别器的任务则是尽可能准确地区分真数据和假数据。 Wasserstein生成对抗网络(WGAN)在GAN的基础上做出了改进,它使用Wasserstein距离作为目标函数,这使得训练过程更加稳定,并且能够生成质量更高的数据。WGAN的核心思想是用Wasserstein距离来衡量两个概率分布之间的距离,这样做的好处是可以减少梯度消失或梯度爆炸的问题,从而使训练过程更为稳定。此外,WGAN还引入了梯度惩罚(Gradient Penalty)机制,即WGAN-GP,进一步增强了模型的性能和稳定性。 在图像生成领域,WGAN-GP的应用非常广泛,它可以用来生成高质量和高分辨率的图像。例如,它可以用于生成人脸图像、自然风景图像、艺术作品等。这些生成的图像不仅可以用于娱乐和艺术创作,也可以用于数据增强、模拟仿真、图像修复等领域。 本篇文档涉及到的Matlab代码,是实现基于WGAN-GP图像生成模型的一个具体工具。Matlab作为一种编程语言,尤其适合进行算法的原型设计和研究开发,它提供了丰富的数学计算库和数据可视化工具,使得研究者能够快速实现复杂的算法,并且直观地观察结果。文档中提到的Matlab代码要求2019b及以上版本,这主要是因为2019b版本的Matlab增强了对深度学习的支持,包括提供了更加强大的GPU加速计算能力,以及对最新深度学习框架的支持。 文件压缩包中还包含了技术分析报告和一些图片文件。技术分析报告可能详细介绍了基于生成对抗网络梯度惩罚的图像生成模型的原理、结构、算法流程以及实现细节。而图片文件可能包含模型生成的一些示例图像,用于展示模型的生成效果。 大数据标签的添加表明,这项研究和相关技术可能在处理大规模数据集方面具有应用潜力。随着数据量的不断增加,大数据分析技术变得越来越重要,而在大数据环境下训练和应用WGAN-GP图像生成模型,可以提升模型对于真实世界复杂数据分布的学习能力。 此外,随着计算能力的提升和算法的优化,WGAN-GP图像生成模型的训练效率和生成质量都有了显著提高。这使得它在图像超分辨率、风格迁移、内容创建等多个领域都有广泛的应用前景。通过不断地研究和开发,基于WGAN-GP的图像生成技术有望在未来的图像处理和计算机视觉领域中发挥更加重要的作用。
2025-07-06 18:48:13 2.51MB
1
生成对抗网络GAN.pptx
2024-07-22 17:40:30 10.48MB
1
pix2pix 有条件对抗网络的图像到图像翻译的PyTorch实现 纸和官方代码 介绍 Pix2Pix是一个图像到图像的翻译项目,它可以做很多事情,下面仅显示其中一些: 它基于条件GAN,其中条件不是矢量或图像,而是图像。如下所示: 发电机 本文比较了两种不同的生成器,编码解码器和U-Net。 结果表明,U-Net可以做得更好,这可能是因为U-Net具有一些跳过连接,这使您可以更好地了解底层功能。 判别器 本文使用patchGAN作为判别器,这意味着我们不判断整个图像对,而是判断一些图像补丁,然后取平均值。 这样可以加快训练阶段,并可以处理不同大小的图像。 数据集 团队还会发布一些不错的数据集,您可以免费下载。 我将使用城市景观数据集。 您可以下载自己喜欢的数据集并放入数据子目录。 要求 火炬0.4.0 火炬视觉 火 我使用pytorch 0.4.0来构建此项目,因此您需要更新py
2024-04-15 23:08:01 9.42MB Python
1
生成对抗网络,已训练模型,用于迁移学习
2024-04-10 15:46:55 884.37MB 生成对抗网络 迁移学习
1
前阵子学习GAN的过程发现现在的GAN 综述文章大都是2016年 lan Goodfellow或者自动化所王飞跃老师那篇。可是在深度学习,GAN领域,其进展都是以月来计算的,感觉那两篇综述有些老了
2023-07-04 23:06:40 6.31MB 生成对抗网络 GAN
1
卷积生成对抗网络之人脸识别(详细步骤讲解+注释版) 注释见代码内,讲解见本人博客
2023-04-25 19:58:02 7KB 深度学习
1
关于生成对抗GAN的干货都在这里了。
2023-04-23 15:46:47 12.63MB 深度学习 生成对抗
1
本文介绍了一种基于图像生成对抗网络的算法,用于感知遮挡人脸的还原。该算法通过对抗网络的生成器和判别器进行训练,实现了对遮挡人脸的还原。实验结果表明,该算法在还原遮挡人脸方面具有较好的效果。本文的研究对于提高人脸识别的准确性和安全性具有重要意义。
1