gancer:计算有效放射疗法的生成对抗网络

上传者: 42165490 | 上传时间: 2025-10-10 23:44:41 | 文件大小: 197KB | 文件类型: ZIP
GANCER:计算有效放射疗法的生成对抗网络 论文代码《使用生殖对抗网络进行放射治疗中的自动化治疗规划》,已提交给2018年医疗保健中的机器学习。 基于知识的计划(KBP)是一种放射疗法治疗计划的自动化方法,该方法包括先预测所需的治疗计划,然后再将其纠正为可交付的计划。 在这项工作中,我们提出了GAN方法来预测理想的3D剂量分布。 此代码包含专门用于GAN的实现。 我们将在以后的更新中提供用于优化的代码。 请注意,原始论文中使用的数据集无法公开共享。 这将在以后的更新中解决,我们将提供一个综合数据集。 另外,您可以使用公共数据集,例如 ,只要您适当地修改数据加载器即可。 先决条件 Linux或OS X 的Python 3 CPU或NVIDIA GPU + CUDA CuDNN 入门 安装 设置pipenv虚拟环境并输入 pipenv install --dev --three pi

文件下载

资源详情

[{"title":"( 38 个子文件 197KB ) gancer:计算有效放射疗法的生成对抗网络","children":[{"title":"gancer-master","children":[{"title":"gancer","children":[{"title":"data","children":[{"title":"voxel_dataset.py <span style='color:#111;'> 4.03KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"image_folder.py <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"base_dataset.py <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"single_dataset.py <span style='color:#111;'> 1019B </span>","children":null,"spread":false},{"title":"base_data_loader.py <span style='color:#111;'> 227B </span>","children":null,"spread":false},{"title":"data_loader.py <span style='color:#111;'> 290B </span>","children":null,"spread":false},{"title":"unaligned_dataset.py <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"aligned_dataset.py <span style='color:#111;'> 2.84KB </span>","children":null,"spread":false},{"title":"slice_dataset.py <span style='color:#111;'> 4.96KB </span>","children":null,"spread":false},{"title":"custom_dataset_data_loader.py <span style='color:#111;'> 2.47KB </span>","children":null,"spread":false}],"spread":false},{"title":"options","children":[{"title":"train_options.py <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"test_options.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"base_options.py <span style='color:#111;'> 7.39KB </span>","children":null,"spread":false}],"spread":true},{"title":"models","children":[{"title":"vox2vox_model.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"pix2pix_model.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"unetcnn_model.py <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"models.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"threedeegan.py <span style='color:#111;'> 5.39KB </span>","children":null,"spread":false},{"title":"networks.py <span style='color:#111;'> 40.43KB </span>","children":null,"spread":false},{"title":"base_model.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"test_model.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"util","children":[{"title":"image_pool.py <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"visualizer.py <span style='color:#111;'> 9.26KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"html.py <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 3.97KB </span>","children":null,"spread":false}],"spread":true},{"title":"scripts","children":[{"title":"get_data.py <span style='color:#111;'> 6.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"test.py <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false}],"spread":true},{"title":".gitignore <span style='color:#111;'> 354B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 605B </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 3.73KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.52KB </span>","children":null,"spread":false},{"title":"imgs","children":[{"title":"manifold.png <span style='color:#111;'> 86.99KB </span>","children":null,"spread":false},{"title":"manifold.eps <span style='color:#111;'> 129.26KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明