基于对抗生成网络GAN的风光新能源场景生成模型:创新数据驱动法展现多种生成方式,MATLAB代码实现风光场景生成的新思路:基于对抗生成网络的三种场景生成方式探索,MATLAB代码:对于对抗生成网络GAN的风光场景生成算法 关键词:场景生成 GAN 对抗生成网络 风光场景 参考文档:可加好友; 仿真平台: python+tensorflow 主要内容:代码主要做的是基于数据驱动的风光新能源场景生成模型,具体为,通过构建了一种对抗生成网络,实现了风光等新能源的典型场景生成,并且设置了多种运行方式,从而可以以不同的时间间隔来查看训练结果以及测试结果。 三种方式依次为:a) 时间场景生成;b) 时空场景生成;c) 基于事件的场景生成;相较于传统的基于蒙特卡洛或者拉丁超立方等场景生成法,数据驱动法更加具有创新性,而且结果更可信,远非那些方法可以比拟的。 ,场景生成; GAN; 对抗生成网络; 风光场景; 数据驱动; 时间场景生成; 时空场景生成; 基于事件的场景生成。,基于GAN的MATLAB风光新能源场景生成算法优化与应用
2025-11-30 16:27:07 1.19MB 数据仓库
1
内容概要:本文围绕基于1D-GAN(一维生成对抗网络)的数据生成方法展开研究,重点介绍如何利用Matlab实现1D-GAN模型,用于生成一维时间序列或信号类数据。文中详细阐述了生成器与判别器的网络结构设计、训练流程、损失函数构建及模型优化策略,并通过实验验证所生成数据在形态、统计特性等方面与真实数据的相似性,展示了该方法在数据增强、仿真测试等场景中的应用潜力。; 适合人群:具备一定机器学习基础,熟悉神经网络和Matlab编程,从事信号处理、时间序列分析或数据生成相关研究的科研人员及研究生。; 使用场景及目标:①解决实际数据样本不足的问题,通过1D-GAN生成高质量合成数据以扩充训练集;②深入理解GAN在一维基于1D-GAN生成对抗网络的数据生成方法研究(Matlab代码实现)数据上的建模范式,掌握其在异常检测、故障诊断、生物信号仿真等领域的迁移应用方法; 阅读建议:建议结合Matlab代码实践操作,重点关注网络结构搭建与训练过程中的超参数调优,同时可通过可视化生成结果评估模型性能,进一步对比不同GAN变体的效果差异。
2025-11-23 16:10:18 62KB 生成对抗网络 数据生成 Matlab
1
电子对抗作战仿真与效能评估.pdf
2025-11-21 21:35:56 20.74MB
1
光流网络对抗性攻击与性能的影响 光流网络在自动驾驶汽车等安全关键应用中扮演着重要的角色,因此了解这些技术的稳健性非常重要。最近,有研究表明,对抗性攻击很容易欺骗深度神经网络对对象进行然而,光流网络对抗攻击的鲁棒性迄今为止还没有研究。在本文中,我们将对抗补丁攻击扩展到光流网络,并表明这种攻击可以损害其性能。 光流是指图像序列中每个像素的表观2D运动。经典公式寻求两个连续图像之间的光流(u,v),其序列使亮度恒定性最小化。在自动驾驶汽车等应用中,光流用于估计车辆周围的运动。 深度神经网络在光流估计问题上实现了最先进的性能。但是,对抗性攻击可能会欺骗这些网络,对对象进行。我们发现,损坏小于1%的图像大小的小补丁可以显着影响光流估计。我们的攻击导致噪声流估计,大大超出了攻击区域,在许多情况下,甚至完全消除了场景中对象的运动。 我们分析了成功和失败的攻击这两种架构,通过可视化他们的特征图,并比较他们的经典光流技术,这是鲁棒的这些攻击。我们还表明,这种攻击是实际的,通过将印刷图案到真实的场景。 在光流网络中,我们对比了两种架构类型下的对抗性攻击的鲁棒性。我们发现使用编码器-解码器架构的网络对这些攻击非常敏感,但我们发现使用空间金字塔架构的网络受到的影响较小。 在汽车场景中,用于自动驾驶的摄像头通常位于挡风玻璃后面。补丁攻击可以通过将补丁放置在汽车的挡风玻璃上或将其放置在场景中(例如,在交通标志或其它车辆上)。注意,当贴片具有零运动w.r.t.相机,经典的光流算法估计零光流的补丁。然而,这种工程补丁,即使它没有运动,也可能导致编码器-解码器架构的光流预测严重错误。 对抗补丁攻击可以通过将印刷图案到真实的场景来实现。我们表明,这种攻击是实际的,并且可以损害光流网络的性能。我们的攻击导致噪声流估计,大大超出了攻击区域,在许多情况下,甚至完全消除了场景中对象的运动。 我们的研究表明,对抗补丁攻击可以损害光流网络的性能,并且这种攻击是实际的。因此,在自动驾驶汽车等安全关键应用中,了解光流网络的鲁棒性非常重要。 在未来,我们计划继续研究光流网络的鲁棒性,并探索新的方法来改进它们的性能。在自动驾驶汽车等安全关键应用中,了解光流网络的鲁棒性非常重要,因此,我们的研究结果对这些应用具有重要的影响。 我们认为,光流网络的鲁棒性是一个重要的研究方向,需要继续研究和探索。我们的研究结果将有助于提高光流网络的性能,并且提高自动驾驶汽车等安全关键应用的安全性。 我们的研究表明,对抗补丁攻击可以损害光流网络的性能,并且这种攻击是实际的。我们的研究结果对自动驾驶汽车等安全关键应用具有重要的影响,并且将有助于提高光流网络的鲁棒性和性能。
2025-10-31 14:29:48 2.53MB 对抗攻击 神经网络
1
假冒 论文“谁是真正的鲍勃?说话人识别系统的对抗攻击”的源代码。 演示网站: (包括一分钟的视频预览) 我们的论文已被。 纸质链接 。 引用我们的论文如下: @INPROCEEDINGS {chen2019real, author = {G. Chen and S. Chen and L. Fan and X. Du and Z. Zhao and F. Song and Y. Liu}, booktitle = {2021 2021 IEEE Symposium on Security and Privacy (SP)}, title = {Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems}, year = {2021}, volume = {},
1
GANCER:计算有效放射疗法的生成对抗网络 论文代码《使用生殖对抗网络进行放射治疗中的自动化治疗规划》,已提交给2018年医疗保健中的机器学习。 基于知识的计划(KBP)是一种放射疗法治疗计划的自动化方法,该方法包括先预测所需的治疗计划,然后再将其纠正为可交付的计划。 在这项工作中,我们提出了GAN方法来预测理想的3D剂量分布。 此代码包含专门用于GAN的实现。 我们将在以后的更新中提供用于优化的代码。 请注意,原始论文中使用的数据集无法公开共享。 这将在以后的更新中解决,我们将提供一个综合数据集。 另外,您可以使用公共数据集,例如 ,只要您适当地修改数据加载器即可。 先决条件 Linux或OS X 的Python 3 CPU或NVIDIA GPU + CUDA CuDNN 入门 安装 设置pipenv虚拟环境并输入 pipenv install --dev --three pi
2025-10-10 23:44:41 197KB Python
1
《楚汉棋缘》是一款专为象棋爱好者设计的专业软件,它集成了丰富的棋谱、经典布局和绝招妙杀,旨在帮助用户提升棋艺,享受与计算机对弈的乐趣。这款软件内置了强大的人工智能系统,使得人机对抗充满挑战性,无论你是初学者还是资深棋手,都能从中找到适合自己的对战难度。 我们要了解象棋的基本规则和术语。象棋,又称中国象棋,是一种双人对弈的战略棋类游戏。在棋盘上,双方各执一组棋子,包括车、马、炮、象(相)、士(仕)和将(帅),每种棋子有其独特的移动方式和战术作用。在《楚汉棋缘》中,你可以通过实战演练来熟悉这些棋子的特点和配合策略。 软件的“自带棋谱”功能是一大亮点,它收录了大量历史上的经典对局,涵盖了古代到现代的名局精华。学习这些棋谱,玩家可以领略到大师们的智慧,理解各种高深的战术布局和精妙的杀招。同时,这些棋谱也是提升棋艺的有效途径,通过对经典局面的复盘和分析,玩家能逐渐培养出敏锐的棋感和深厚的棋力。 “经典布局”是《楚汉棋缘》中的一大特色。布局是指开局阶段双方棋子的配置和走法,不同的布局有着不同的战略意图。通过研究和实践各种布局,玩家可以拓宽视野,掌握开局的主动权,为中盘战斗奠定坚实的基础。软件提供了丰富的开局资料,让玩家可以在实战中尝试并熟悉各种布局,从而提高开局阶段的决策能力。 “绝招妙杀”是《楚汉棋缘》中的又一精彩内容,它展现了象棋中的精彩瞬间和巧妙的杀局。这些绝招通常需要精细的操作和深刻的洞察力,通过学习和模仿,玩家可以提升自己的计算能力和对局势的把握,学会如何在关键时刻施展致命一击。 在与电脑对战的过程中,《楚汉棋缘》的人工智能算法提供了多种难度等级,适应不同水平的玩家。初级模式适合新手练习基本规则,而高级模式则对棋艺要求较高,可以挑战玩家的极限。这种人机对抗模式不仅提供了即时反馈,还能在实战中锻炼玩家的应变能力和心理素质。 《楚汉棋缘》作为一款全面的象棋软件,它的价值在于提供了一个完善的平台,让玩家可以学习、实践和提升象棋技能。无论是棋谱的学习、经典布局的探索,还是绝杀技巧的掌握,都为提升棋艺提供了有力的支持。此外,自带注册码的功能让玩家可以直接进入游戏,无需额外购买,更加便捷地享受象棋带来的乐趣。
2025-10-10 17:04:44 1.64MB 人机对抗
1
生成式对抗网络(GAN)是一种深度学习模型,由Ian Goodfellow于2014年提出,主要用于非监督学习环境。GAN由两部分组成,一个是生成器(Generator),另一个是判别器(Discriminator),这两个网络通过互相竞争的方式共同进化。 生成器的任务是创造出新的、逼真的数据样本,这些样本需要与训练数据集中的样本尽可能相似。生成器通过接收一个随机噪声向量作为输入,并通过一个深度神经网络进行参数化变换,输出生成的数据样本。生成器的关键挑战是需要捕获训练数据集中的隐含数据分布规律,使得生成的样本能够被人类或其他机器学习算法判断为真实的。 判别器的任务则恰恰相反,它的目标是区分真实数据和生成器生成的假数据。判别器通过学习训练数据集的特征,能够给出输入数据为真实的概率。判别器和生成器一样,也是一个深度神经网络。在训练过程中,判别器要不断调整自身参数,以提高对真实数据与假数据的判别能力。 GAN的核心思想是通过让生成器和判别器进行对抗式训练,使得生成器不断学习如何产生更加逼真的数据,而判别器则学习如何更准确地区分真假数据。在理想情况下,这种训练过程将会持续进行,直到生成器生成的数据与真实数据几乎无法区分。 GAN解决了一个非监督学习中的难题,即在没有标注数据的情况下如何学习数据的内在规律。GAN能够应用于图像生成、风格转换、数据增强等多种场景。然而,GAN也存在一些固有的问题和挑战,比如训练的不稳定性、模式崩溃(mode collapse)等问题。 在低维数据情况下,可以使用简单的概率模型,比如高斯分布来拟合数据分布。但在高维数据情况下,如图像数据,事情会变得更加复杂。图像数据的复杂性要求生成器和判别器必须能够处理复杂的数据结构和高度的特征相关性。 生成式对抗网络在实际应用中还包括多种变体和改进版本,例如深度信念网络(DBN)和受限玻尔兹曼机(RBM)。这些模型通常会使用更加复杂的概率图模型来表示数据的生成过程。 在GAN的损失函数方面,通常使用交叉熵损失。对于判别器,损失函数是判别器正确区分真伪样本的能力的度量;而对于生成器,损失函数是判别器误判生成样本为真实样本的概率。 GAN的训练过程类似于零和博弈,生成器和判别器之间的竞争导致了一种动态平衡状态。当判别器对生成器的输出进行更准确的分类时,生成器需要进一步改进以提高欺骗判别器的能力。反之亦然。整个过程是动态且迭代的。 在GAN训练过程中存在两大问题,一是梯度消失问题,二是优化目标的荒谬性和梯度不稳定问题。这些问题导致GAN训练的难度增加,特别是对于生成器来说,往往会导致模式崩溃的问题。模式崩溃是指生成器生成的数据变得过于相似,失去了多样性。 GAN是一种极具潜力的机器学习模型,尽管存在一些挑战和问题,但其在图像生成、风格转换和数据增强等领域的应用前景十分广阔。
2025-10-03 13:49:42 3.46MB
1
基于强化学习的空战对抗 利用值函数逼近网络设计无人机空战自主决策系统,采用epsilon贪婪策略,三层网络结构。 其中包含了无人机作为质点时的运动模型和动力学模型的建模。 由于无人机作战的动作是连续并且复杂的,本项目仅考虑俯仰角gamma(又叫航倾角)和航向角pusin的变化,并且离散的规定每次变化的幅度为10度,假定速度v为恒定值。根据飞机的运动模型,由俯仰角、航向角和速度可以推算出飞机位置的改变,即x,y,z三个方向的速度分量,在每一步中,根据这些分量变化位置position信息,posintion中的三个值为x,y,z坐标,是东北天坐标系下的坐标值。从坐标信息和角度信息以及速度信息,可以计算出两个飞机的相对作战态势state。 在上文中提到,我们的动作是仅对俯仰角和航向角进行改变,即增大,减少和不变,故两个角度的变化组合一共有3×3=9种动作。在每个态势下,都有9种动作可以选择,将这个态势下的9种动作将会产生的新的态势,作为网络的输入,网络的输出是9个数字,代表每个动作的值函数。 由于是无监督学习,故我们需要利用值函数的Bellman公式生成标签。本文利用时间差分思想,(时间差
2025-07-13 21:51:06 84KB 对抗学习 强化学习
1
基于wasserstein生成对抗网络梯度惩罚(WGAN-GP)的图像生成模型 matlab代码,要求2019b及以上版本 ,基于Wasserstein生成对抗网络梯度惩罚(WGAN-GP); 图像生成模型; MATLAB代码; 2019b及以上版本。,基于WGAN-GP的图像生成模型Matlab代码(2019b及以上版本) 生成对抗网络(GAN)是深度学习领域的一个重要研究方向,自从2014年Ian Goodfellow等人提出以来,GAN已经取得了许多显著的成果。GAN的核心思想是通过一个生成器(Generator)和一个判别器(Discriminator)相互竞争的过程,来学习生成数据的分布。生成器的任务是生成尽可能接近真实数据的假数据,而判别器的任务则是尽可能准确地区分真数据和假数据。 Wasserstein生成对抗网络(WGAN)在GAN的基础上做出了改进,它使用Wasserstein距离作为目标函数,这使得训练过程更加稳定,并且能够生成质量更高的数据。WGAN的核心思想是用Wasserstein距离来衡量两个概率分布之间的距离,这样做的好处是可以减少梯度消失或梯度爆炸的问题,从而使训练过程更为稳定。此外,WGAN还引入了梯度惩罚(Gradient Penalty)机制,即WGAN-GP,进一步增强了模型的性能和稳定性。 在图像生成领域,WGAN-GP的应用非常广泛,它可以用来生成高质量和高分辨率的图像。例如,它可以用于生成人脸图像、自然风景图像、艺术作品等。这些生成的图像不仅可以用于娱乐和艺术创作,也可以用于数据增强、模拟仿真、图像修复等领域。 本篇文档涉及到的Matlab代码,是实现基于WGAN-GP图像生成模型的一个具体工具。Matlab作为一种编程语言,尤其适合进行算法的原型设计和研究开发,它提供了丰富的数学计算库和数据可视化工具,使得研究者能够快速实现复杂的算法,并且直观地观察结果。文档中提到的Matlab代码要求2019b及以上版本,这主要是因为2019b版本的Matlab增强了对深度学习的支持,包括提供了更加强大的GPU加速计算能力,以及对最新深度学习框架的支持。 文件压缩包中还包含了技术分析报告和一些图片文件。技术分析报告可能详细介绍了基于生成对抗网络梯度惩罚的图像生成模型的原理、结构、算法流程以及实现细节。而图片文件可能包含模型生成的一些示例图像,用于展示模型的生成效果。 大数据标签的添加表明,这项研究和相关技术可能在处理大规模数据集方面具有应用潜力。随着数据量的不断增加,大数据分析技术变得越来越重要,而在大数据环境下训练和应用WGAN-GP图像生成模型,可以提升模型对于真实世界复杂数据分布的学习能力。 此外,随着计算能力的提升和算法的优化,WGAN-GP图像生成模型的训练效率和生成质量都有了显著提高。这使得它在图像超分辨率、风格迁移、内容创建等多个领域都有广泛的应用前景。通过不断地研究和开发,基于WGAN-GP的图像生成技术有望在未来的图像处理和计算机视觉领域中发挥更加重要的作用。
2025-07-06 18:48:13 2.51MB
1