其中的内容分别为: 第1关:MIPS指令译码器设计 第2关:定长指令周期---时序发生器FSM设计 第3关:定长指令周期---时序发生器输出函数设计 第4关:硬布线控制器组合逻辑单元 第5关:定长指令周期---硬布线控制器设计 第6关:定长指令周期---单总线CPU设计
2025-11-27 08:51:53 152KB
1
嵌入式系统实验—基于STM32F4的七段数字显示 本实验是基于北京邮电大学信通院大三计算机原理与应用课程的实验一提高部分,旨在展示使用STM32F4单片机实现七段数字显示的实验过程。 知识点一:STM32F4单片机的GPIO配置 在实验中,我们使用STM32F4单片机的GPIO口来控制七段数字显示器。本实验中,我们使用了GPIOF口,定义了SMG_RCC_GPIO和SMG_GPIO两个宏分别表示GPIOF口的时钟使能和GPIOF口本身。然后,我们使用GPIO_InitTypeDef结构体来配置GPIO口的工作模式、输出类型和速度。 知识点二:七段数字显示器的控制 在实验中,我们使用HC595 shift register来控制七段数字显示器。我们定义了HC595_SI、HC595_RCK和HC595_SCK三个宏分别表示HC595 shift register的数据输入、时钟信号和 latch信号。然后,我们使用HC595_Send函数将数字数据发送到HC595 shift register,并使用HC595_Lauch函数来触发 latch信号。 知识点三:数字显示的实现 在实验中,我们使用SMG_Display函数将数字显示在七段数字显示器上。我们首先将数字分离成单个数字,然后使用HC138_A、HC138_B、HC138_C和HC138_D四个宏分别表示七段数字显示器的四个段码。我们使用SMG_ShowStudentID函数将学生的学号显示在七段数字显示器上。 知识点四:延迟函数的实现 在实验中,我们使用SMG_Delay函数来实现延迟功能。本函数使用循环来实现延迟,循环次数可以根据需要进行调整。 知识点五:实验结果 最终,我们可以使用SMG_ShowStudentID函数将学生的学号显示在七段数字显示器上,并且可以调整延迟时间来控制显示速度。 本实验展示了使用STM32F4单片机实现七段数字显示的实验过程,涵盖了GPIO配置、七段数字显示器控制、数字显示实现和延迟函数实现等多个知识点。
2025-11-26 17:28:24 13KB 课程资源
1
本文详细介绍了ZYNQ实验中的CIC插值滤波器设计与实现。CIC滤波器是一种常用于数字信号处理的滤波器,特别适用于降采样和升采样操作。文章首先介绍了CIC滤波器的基本结构,包括积分器、插值器和梳状器,并讨论了位宽确定的计算方法。随后,通过Verilog HDL在Vivado 2018.3环境中实现了插值滤波器,包括梳状器模块、插值器模块和积分器模块的设计。实验还进行了行为仿真验证,结果表明滤波后的波形未出现失真,但存在幅度减小的情况。文章最后提供了相关参考书籍和手册,旨在为读者提供学习和实践指导。 ZYNQ实验中的CIC插值滤波器设计与实现涉及数字信号处理技术,CIC滤波器是其中的关键组件。该滤波器能够处理数字信号中的降采样和升采样,主要由积分器、插值器和梳状器三部分构成。在设计CIC滤波器时,确定位宽是一个重要的步骤,它直接影响到滤波器的性能。 文章首先对CIC滤波器的内部结构进行了详细阐述,每个组成部分的作用和相互之间的关系都得到了清晰的说明。在设计实现环节,作者选择了Verilog HDL硬件描述语言,并利用Vivado 2018.3这一集成开发环境进行编程实现。设计过程中,梳状器模块、插值器模块和积分器模块的设计至关重要,每一步的编码都要确保准确无误。 为保证设计的正确性,作者进行了行为仿真验证。通过模拟测试,验证了滤波器的功能性和性能。实验结果表明,尽管滤波后的信号在幅度上有一定程度的减小,但并未出现失真现象,这说明滤波器设计是成功的。通过这种验证方式,可以确保在真实应用中CIC插值滤波器能够满足数字信号处理的需求。 文章的作者还为读者提供了一系列参考资料,包括参考书籍和手册。这些资料不仅为本实验的设计提供了理论支持,也为进一步的学习和实践提供了指导。这种丰富的资料提供是十分必要的,因为它们可以帮助读者更好地理解和掌握CIC滤波器的设计与实现过程。 由于CIC插值滤波器在数字信号处理领域的广泛应用,本实验项目源码对于从事相关工作的工程师和技术人员具有重要的参考价值。此外,对于学生和研究者来说,这也是一个了解和学习数字信号处理技术的良好范例。通过本实验,读者可以深入理解CIC滤波器的工作原理,掌握其设计方法,并能应用到实际的数字信号处理项目中去。 本次实验项目源码的提供,不仅展示了ZYNQ平台在数字信号处理实验中的应用,也体现了在实际工程应用中,如何通过硬件描述语言和集成开发环境相结合来实现复杂的数字信号处理算法。通过深入分析和掌握这些工具和技术,研究者和工程师可以设计出更加高效和精确的信号处理系统。 ZYNQ CIC插值滤波器实验的实现,强调了理论与实践相结合的重要性。在实际应用中,只有深刻理解了滤波器的理论基础,才能设计出高质量的硬件实现,并通过仿真和测试来验证设计的正确性。此外,该项目的源码文件也展示了如何在现代FPGA平台上进行高效的设计和仿真,对于促进数字信号处理技术的发展具有积极的意义。 对于那些希望深入学习数字信号处理和FPGA开发的读者来说,本项目的源码不仅是学习材料,也是实际操作的参考。通过研究这一项目,可以加深对CIC滤波器实现原理的理解,并能够更好地应用到信号处理领域中去。本项目还突出了代码在硬件设计中的作用,以及在保证设计准确性方面的重要性。所有这些,对于提高设计者的技能和知识水平,有着不可或缺的作用。
2025-11-26 15:46:11 664KB 软件开发 源码
1
本文介绍了在开拓者FPGA开发板上实现六位数码管静态显示0-F的实验过程。实验通过分频模块将50kHz的系统时钟分频为0.5秒的脉冲信号,控制数码管以0.5秒的频率循环显示0-F。数码管显示模块包含位选信号和段选信号的控制逻辑,其中位选信号控制数码管的显示位置,段选信号控制显示内容。实验还详细解释了共阳极数码管的驱动原理,并提供了完整的Verilog代码实现,包括分频模块、数码管静态显示模块和顶层模块的设计。 在FPGA(现场可编程门阵列)开发领域,数码管静态显示实验是一个基础性的练习,它主要涵盖了硬件描述语言Verilog的使用和FPGA开发板的应用。本项目针对的是开拓者FPGA开发板,主要目标是在六位数码管上实现静态显示十六进制数字0至F,即0到15的数字。整个实验过程可以分为几个关键步骤。 实验需要设计一个分频模块,将FPGA开发板上的系统时钟频率从50kHz降至0.5秒的周期脉冲信号。这个分频的过程是基于计数器的原理,当计数器累计到一定值时,输出一个脉冲信号,控制数码管的显示刷新频率。 接下来是数码管显示模块的设计,它包括两个主要控制信号:位选信号和段选信号。位选信号决定了哪一个数码管将显示数字,而段选信号则决定了相应数码管显示的具体内容。在共阳极数码管中,每个段都需要一个负电压来点亮,因此段选信号实际上控制着向数码管各个段发送的电压值。 实验的核心内容是理解共阳极数码管的驱动原理。共阳极数码管的每个段都有一个共用的阳极,当某个段的阴极被接地时,该段会点亮。因此,通过向各个段的阴极施加适当的电平,就可以控制数码管上显示的数字。由于实验中涉及到的是静态显示,所以不需要动态扫描,只需要确保每个段对应的电平正确即可。 项目提供了完整的Verilog代码实现。代码中包括了分频模块、数码管静态显示模块以及顶层模块的设计。顶层模块负责将分频模块的输出连接到数码管显示模块,从而实现整个系统的功能。在编写代码时,需要精确地描述每个模块的逻辑关系和信号流向,确保模块之间能够正确地通信和协同工作。 实验的进行不仅能够帮助学习者掌握FPGA的基本使用方法,还能加深对Verilog语言编程的理解,尤其是在硬件逻辑描述和时序控制方面。通过这样的实践,学习者能够深入理解FPGA的内部结构和工作原理,为进一步学习更复杂的FPGA项目打下坚实的基础。 在提供的压缩包文件中,包含了名为“0X8cJc2URNDzn5OcIBjG-master-c057008f79e3020ab2e9fe7adcd35f439d86526f”的文件,这个文件很可能包含了整个项目的源代码文件和相关的文档说明,供学习者下载使用和参考。
2025-11-26 13:27:10 6KB 软件开发 源码
1
信息隐藏技术是计算机科学领域中的一个研究热点,它涉及到如何将秘密信息隐蔽地嵌入到宿主媒体中,以达到保护信息安全的目的。在众多信息隐藏技术中,隐写术是其重要分支之一,它通过修改宿主媒体的某些属性来携带秘密信息。F5算法是一种经典的隐写术方法,它通过一系列数学变换将秘密信息嵌入到数字图片中,使得隐写过程既隐蔽又具有一定的鲁棒性。 F5算法以一种更为复杂的方式对图像数据进行操作,它通过一种特殊的矩阵编码方法,将隐写数据分散到图像的像素中,这样即使经过某些压缩、剪切或转换等处理,隐写信息也能够较为完整地保留。F5算法的提出,不仅提高了隐写术的隐蔽性,也增强了对抗常规图像处理操作的能力。 为了实现F5算法,需要具备一定的图像处理和编程知识。在编写实现F5算法的程序时,需要处理图像文件的读取和写入,对图像像素进行操作,并且对数据嵌入和提取的数学模型要有深入的理解。实验中,西南科技大学的学生可能会编写或使用现有的软件工具来执行F5算法,将一段秘密信息嵌入到选定的图像中,然后再从修改后的图像中提取出该信息,验证F5算法的实现效果。 此外,F5算法的实现还涉及到对图像容量、隐蔽性、鲁棒性的权衡。容量指的是能够嵌入多少数据,隐蔽性关注的是嵌入数据后图像的变化是否容易被人眼察觉,而鲁棒性则是指嵌入数据对图像各种可能的后处理操作的抵抗能力。为了达到一个较为平衡的状态,F5算法采取了一系列的策略,比如使用矩阵编码来分散信息,以及采用伪随机化技术来选择嵌入位置,从而在不显著改变图像外观的情况下,保证了信息的安全性。 实验三的标题“西南科技大学信息隐藏实验三:F5算法实现”表明了本次实验的目的在于让学生实践F5算法。通过这个实验,学生可以深入理解隐写术的原理和应用,学习如何在不引起注意的情况下传递信息。同时,实验还可能要求学生探讨F5算法在不同条件下的表现,比如在不同的压缩比、不同的图像类型下的鲁棒性问题,以及如何优化算法来提高其隐蔽性和抗干扰能力。 在信息科技不断进步的今天,信息隐藏技术的重要性愈发凸显。它不仅在保护商业秘密、个人隐私等方面有着重要作用,而且在军事、司法等领域也发挥着关键作用。通过对F5算法等信息隐藏技术的学习和实践,学生将能够掌握这一领域的核心知识,并在未来的工作中将其应用到信息安全和数据保护的各个领域。
2025-11-26 11:18:44 436KB 信息隐藏
1
本文分享了郑州大学编译原理实验三的代码实现,主要涉及正规式转换为NFA(非确定有限自动机)的过程。作者首先表达了对该课程实验安排的不满,但强调了编译原理课程的重要性。代码分为main.cpp和set.h两部分,实现了正规式的合法性检查、连接符号补全、后缀表达式转换以及NFA生成等功能。测试用例可直接输入如a(b|c)*abc的正规式进行验证。代码虽不保证完全正确,但为学习者提供了参考价值。
2025-11-25 17:02:14 29KB 软件开发 源码
1
实验2的目的是让学生熟悉匿名上位机通信协议,并利用Simulink进行串口通信的仿真,以便发送可变数据并观察控制系统参数的调节效果。实验环境主要包括Win10 PC、Matlab16a、ANO_TC匿名上位机V6.5以及Keil5开发工具。 匿名上位机通信协议V6.00的核心要点如下: 1. **SUM校验**:SUM是帧数据的校验和,计算方法是从帧头开始到数据帧最后一字节的所有字节的和,只保留低八位,忽略高位。 2. **LEN字段**:LEN表示数据帧内的实际数据字节长度,不包括帧头、功能字、长度字节和校验位。例如,如果帧中包含3个int16型数据,LEN的值应为6。 3. **地址字节**:S_ADDR和D_ADDR分别代表发送设备和目标设备的地址,具体值需参照设备定义表。 4. **数据帧类型**:协议分为显示用数据帧、命令及参数数据帧、用户自定义数据帧。其中,命令帧0xE0和参数帧0xE1涉及双向验证,确保数据的正确传输。 5. **Simulink串口通信**:在Matlab Simulink中,串口通信可以通过Instrument Control Toolbox的SerialPort模块实现。发送数据时,需要注意Constant模块的设置,如数据类型和采样时间。Serial Send模块默认处理uint8型一维数组。而Serial Receive模块可以选择阻塞或非阻塞模式,以适应不同接收需求。 实验内容包括建立Simulink模型,模拟串口COM3与匿名上位机通信,发送可变数据并进行可视化。通过上位机改变数据,可以实时观察仿真结果,调整PID等控制系统参数,以优化系统性能。 具体操作步骤如下: 1. 创建Simulink模型,根据数据帧格式插入必要的Block。 2. 添加Constant模块,设置数据帧格式,如图9所示。 3. 选择适当的Serial Port模块进行串口配置,如波特率等。 4. 运行仿真,观察发送和接收数据的过程。 通过这个实验,学生能够掌握串口通信的基本原理,理解匿名上位机通信协议,并学会使用Simulink进行串口通信的仿真,这对于实际的嵌入式系统开发和调试具有重要意义。
2025-11-24 15:45:34 1.01MB 网络
1
在本篇计算机视觉实验报告中,学生王培钰主要任务是使用CImg库重写和封装Canny边缘检测算法,并对算法进行优化。Canny算法是计算机视觉领域中一种经典的边缘检测方法,它通过一系列步骤有效地提取图像中的边缘。以下是实验报告中涉及的关键知识点和实现过程的详细解释: 1. **Canny边缘检测算法**:Canny算法包含以下步骤: - **灰度化**:将彩色图像转换为灰度图像,通过红、绿、蓝分量的加权平均完成。 - **高斯滤波**:使用高斯滤波器平滑图像,消除高频噪声,但保留边缘信息。这里使用了`gaussian_smooth()`函数,并通过`make_gaussian_kernel()`生成高斯核。 - **计算梯度**:通过计算一阶偏导数求得图像的梯度幅值和方向。这涉及到`derrivative_x_y()`函数,以及`angle_radians()`和`radian_direction()`来确定方向。 - **非极大值抑制**:通过比较当前像素点与其邻域内像素点的梯度值,抑制非边缘像素,以减少假阳性边缘。`non_max_supp()`函数实现此操作。 - **双阈值检测**:使用高低两个阈值确定边缘,低阈值用于连接边缘,高阈值用于去除噪声。`apply_hysteresis()`函数处理这一过程。 - **边缘连接与删除**:通过`canny_line()`函数将相邻边缘连成长线,`delete_line()`函数删除长度小于20的短线条。 2. **CImg库的使用**:CImg是一个开源的C++图像处理库,实验要求只使用CImg进行图像的读取、写入和处理。通过封装,确保了代码的简洁性和可读性。 3. **代码封装**:每个功能都封装为单独的函数,如`RGBtoGray()`、`gaussian_smooth()`等,便于代码复用和维护。 4. **参数测试与分析**:对不同参数(如高斯滤波的σ值、双阈值)进行测试,观察其对边缘检测结果的影响。这有助于理解算法的敏感性和适应性。 5. **测试与调试**:通过对每一步的结果进行可视化和数量统计(如边缘像素点的数量),验证算法的正确性和效果。例如,通过比较经过连线和删线处理后的像素点数量变化。 实验过程中,学生按照学号尾号的规则分配了需要改写的代码(Code0),并成功实现了Canny算法的各个步骤,包括图像预处理、边缘检测和后处理。测试表明,经过优化的Canny算法能够有效检测图像边缘,并能根据设定的参数调整边缘的精确度和连通性。这种实践加深了对Canny边缘检测算法的理解,并提高了编程能力。
2025-11-24 09:46:41 2.15MB 计算机视觉
1
本文档是一份操作系统实验报告,涉及进程调度、作业调度等关键操作系统概念。报告详细地记录了实验过程、原理、设计和测试结果。实验主要目的是通过高级语言实现一个进程调度程序,加深对进程概念和调度算法的理解。 实验内容包括以下几个主要方面: 1. 进程调度:报告中提到了进程调度的概念和重要性。在操作系统中,进程调度是指根据某种策略或算法为进程分配处理器时间,从而使得多个进程可以并发执行。实验中采用了“简单时间片轮转法”进行模拟。 2. 进程控制块(PCB):PCB是操作系统中一种重要的数据结构,用于存放进程的运行信息,包括进程名、到达时间、运行时间、已运行时间、进程状态等。它是进程调度的依据。 3. 时间片轮转法:该方法是一种简单的调度算法,将CPU时间划分为固定长度的时间片,分配给就绪队列中的进程。每个进程轮流获得一个时间片运行,时间片用完后若进程未完成则进入就绪队列的尾部等待下一次调度。 4. 多级反馈队列调度算法:这是一种结合多种调度策略的调度算法,它根据进程的动态变化,将进程分配到不同的队列中进行调度,以更合理地利用系统资源。 5. 实验步骤与原理:文档详细描述了实验的操作步骤,包括初始化PCB、进程排队、检查队列、进程运行完毕的处理以及队列的更新等。通过具体步骤反映出了时间片轮转法和多级反馈队列算法的实际应用。 6. 实验结果:报告提供了实验过程中多次运行的截图和结果数据,以图形化的方式展现了进程状态的变化以及调度过程。 7. 困难与心得体会:作者在实验过程中遇到了一些编程问题,包括代码结构不合理和对编程语言不熟悉等问题。通过调试和修改代码,作者获得了宝贵的实验经验和编程技巧。 整个实验报告展示了操作系统课程理论与实践的结合,通过对进程调度的实验操作,帮助学生更深刻地理解操作系统中进程调度的原理和方法。实验不仅检验了学生对操作系统原理的掌握程度,同时锻炼了学生的编程能力和问题解决能力。
2025-11-23 11:26:55 1.16MB
1
基于MATLAB的多缝夫琅禾费衍射实验仿真_王化雨
2025-11-22 20:26:01 1.66MB
1