跨模态投影匹配和分类损失应用于图像-文本匹配中的深度学习方法 本文提出了跨模态投影匹配(CMPM)损失和跨模态投影分类(CMPC)损失,用于学习判别图像-文本嵌入。CMPM损失试图最小化投影相容性分布和归一化匹配分布之间的KL散度,以便增加不匹配样本之间的方差和匹配样本之间的关联。CMPC损失尝试将来自一个模态的特征的向量投影分类到来自另一模态的匹配特征上,以增强每个类别的特征紧凑性。 深度学习在图像-文本匹配中的应用非常重要,因为它在各种应用中非常重要,例如双向图像和文本检索、自然语言对象检索、图像字幕和视觉问题回答。现有的深度学习方法要么尝试在共享潜在空间中学习图像和文本的联合嵌入,要么构建相似性学习网络来计算图像-文本对的匹配分数。 联合嵌入学习框架通常采用两分支架构,其中一个分支提取图像特征,另一个分支对文本表示进行编码,然后根据设计的目标函数学习判别式交叉模态嵌入。最常用的函数包括典型相关分析(CCA)和双向排名损失。 双向排名损失产生更好的稳定性和性能,并且越来越广泛地用于交叉模态匹配。然而,它遭受采样有用的三胞胎和选择适当的利润率在实际应用中。最近的一些工作探索了具有身份级别标记的更有效的跨模态匹配算法。 CMPM损失和CMPC损失引入了跨模态特征投影操作,用于学习区分性的图像-文本嵌入。CMPM损失函数不需要选择特定的三元组或调整裕度参数,并且在各种批量大小下具有很大的稳定性。 大量的实验和分析表明,该方法的优越性,有效地学习判别图像-文本嵌入。相关工作包括联合嵌入学习和成对相似性学习,联合嵌入学习的目的是找到一个联合的潜在空间,在这个潜在空间下,图像和文本的嵌入可以直接进行比较。 深度典型相关分析(DCCA)旨在学习使用深度网络的两个数据视图的非线性变换,使得所得表示高度线性相关,而DCCA的主要警告是每个小批量中不稳定的协方差估计带来的特征值问题。双向排名损失扩展了三重损失,这需要匹配样本之间的距离比不匹配样本之间的距离小一个余量,以用于图像到文本和文本到图像排名。
2025-07-15 16:37:07 801KB 深度学习 关键词匹配
1
AGV( Automated Guided Vehicle,自动导引车)在物流、仓储等领域中广泛应用,其路径规划是关键的技术环节。Q学习作为强化学习的一种算法,被广泛用于解决动态环境中的决策问题,包括AGV的路径规划。这篇内容我们将深入探讨Q学习在AGV路径规划中的应用及其相关知识点。 一、Q学习基本原理 Q学习是一种离线或在线的、基于表格的强化学习算法,由Richard S. Sutton在1988年提出。它的核心思想是通过不断与环境交互,更新一个Q表来学习最优策略。Q表记录了在每个状态下执行每种动作所能得到的未来奖励的期望值。Q学习的目标是找到最大化长期奖励的策略。 二、Q学习公式 Q学习的更新公式为: \[ Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r_{t+1} + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t)] \] 其中,\( s_t \) 和 \( a_t \) 分别代表当前状态和动作,\( r_{t+1} \) 是执行动作 \( a_t \) 后立即获得的奖励,\( s_{t+1} \) 是新的状态,\( \alpha \) 是学习率,\( \gamma \) 是折扣因子。 三、AGV路径规划问题 在AGV路径规划中,环境通常被视为一个马尔科夫决策过程(MDP),状态可以是AGV的位置、速度等信息,动作则包括前进、转弯等操作。目标是在满足约束条件下,如最短时间、最小能耗等,找到一条从起点到终点的最优路径。 四、Q学习应用于AGV路径规划 1. 建立状态-动作空间:需要将AGV可能遇到的所有状态和可执行的动作进行编码,形成状态空间和动作空间。 2. 初始化Q表:创建一个二维数组,行代表状态,列代表动作,初始时所有Q值设为0。 3. 探索与利用:在每个时间步,根据一定的策略(如ε-greedy策略)选择动作,既要有探索新路径的随机性,也要有利用已有知识的倾向。 4. 更新Q值:执行动作后,根据实际得到的奖励和新状态,使用Q学习公式更新对应的状态-动作对的Q值。 5. 策略迭代:随着Q表的不断更新,策略也在逐步优化。当达到某个终止条件(如达到预设的学习次数、Q值变化小于阈值等)时,停止学习并采用最优策略。 五、优化与扩展 1. 动态环境适应:在实时环境中,路径可能因障碍物动态变化而需要调整。Q学习能适应环境变化,持续学习新的最优路径。 2. 函数近似:对于大规模状态和动作空间,使用表格可能会非常庞大。通过神经网络等函数近似方法,可以高效地逼近Q值。 3. 轨迹平滑:Q学习得到的可能是离散的路径点,通过插值或其他平滑算法,可以生成连续的行驶轨迹。 Q学习为AGV路径规划提供了一种有效的解决方案,它结合了探索与利用,能够在未知环境中逐步学习最优策略。实际应用中,还需要结合具体场景进行算法优化,以实现更高效、更可靠的路径规划。
2025-05-27 17:32:43 1.42MB Qlearning 强化学习
1
《统计学习方法》是李航博士的一本经典著作,它深入浅出地介绍了机器学习中的统计学习理论和方法。MATLAB作为一款强大的数值计算和数据分析工具,被广泛用于实现各种机器学习算法。这个压缩包“Matlab系列--李航《统计学习方法》MATLAB实现.zip”很可能是对书中算法的一种实践性解释,旨在帮助读者更好地理解和应用这些理论。 在MATLAB中实现统计学习方法,通常包括以下几个方面: 1. 数据预处理:数据清洗、缺失值处理、异常值检测和标准化是必不可少的步骤。MATLAB提供了如`isnan`、`isinf`等函数来检查缺失或异常值,以及`normalize`函数进行数据标准化。 2. 特征选择:特征选择有助于减少模型复杂度和提高学习效率。MATLAB可以通过相关性分析、主成分分析(PCA)或其他特征选择算法(如递归特征消除)来实现。 3. 基本学习算法: - 线性回归:`fitlm`函数可以用于实现简单线性回归和多元线性回归。 - 逻辑回归:`fitglm`或`logit`函数用于二分类问题,`multinom`用于多分类问题。 - 支持向量机(SVM):`svmtrain`和`svmpredict`是实现SVM的关键函数,包括线性核和非线性核(如RBF核)。 - 决策树:`fitctree`用于构建决策树,`predict`进行预测。 - 随机森林:`TreeBagger`函数可以创建随机森林模型。 - 贝叶斯分类:`fitcnb`用于朴素贝叶斯分类。 4. 模型评估与调优:`confusionmat`用于生成混淆矩阵,`crossval`或`kfold`进行交叉验证,`optimization`工具箱可用于参数调优。 5. 模型融合:如bagging、boosting和stacking等集成学习方法,可以通过组合多个模型来提升性能。 6. 深度学习:MATLAB的深度学习工具箱提供了一系列神经网络模型,如卷积神经网络(CNN)、循环神经网络(RNN)等,`patternnet`和`feedforwardnet`用于前馈网络,`convnet`用于构建CNN。 7. 实践项目:可能包含书中各个章节的实例代码,如线性回归在房价预测中的应用,SVM在手写数字识别上的运用,或者贝叶斯网络在文本分类中的实现。 通过这些MATLAB代码,学习者不仅可以深入理解统计学习方法背后的数学原理,还可以掌握如何在实际问题中应用这些算法。同时,对于kwan1118这个文件名,虽然没有具体说明,但很可能是一个包含所有实现代码的MATLAB工作空间文件,或者是某个特定算法的脚本或函数。 这个压缩包为学习和实践《统计学习方法》中的算法提供了宝贵的资源,无论是初学者还是经验丰富的数据科学家,都可以从中受益。
2025-04-22 16:57:17 3KB
1
细粒度图像分类旨在从某一类别的图像中区分出其子类别,通常细粒度数据集具有类间相似和类内差异大的特点,这使得细粒度图像分类任务更加具有挑战性。随着深度学习的不断发展,基于深度学习的细粒度图像分类方法表现出更强大的特征表征能力和泛化能力,能够获得更准确、稳定的分类结果,因此受到了越来越多研究人员的关注和研究。 【细粒度图像分类】是图像识别领域的一个子任务,主要目标是区分同一类别下的不同亚类别,例如区分不同种类的鸟类或汽车型号。由于这些亚类别之间具有高度的相似性和细微的差异,使得此类任务相比传统的粗粒度图像分类更具挑战性。细粒度图像分类在实际应用中有着广泛的需求,如生物多样性研究、自动驾驶车辆识别、安防监控等。 【深度学习】在解决细粒度图像分类问题上展现出优越性,通过构建深层神经网络,如**卷积神经网络(CNN)**,能够自动学习和提取多层次的特征,从而更好地捕捉图像中的微小细节。CNN的多层结构能够逐渐从低级特征(如边缘、颜色)进化到高级特征(如物体结构、纹理),这对于区分细粒度类别的关键特征至关重要。 **基于强监督的细粒度图像分类**方法通常需要大量的带有精确位置标注(如关键点或部分边界框)的数据进行训练。这类方法通过定位对象的局部特征来提高分类准确性,如Part-Based CNN、Attention机制等。这些模型在学习过程中考虑了物体的不同部位,强化了对关键部位特征的学习。 **弱监督的细粒度图像分类**则相对较为宽松,仅需类别标签,不需精确的位置信息。这通常通过利用数据增强、自注意力机制或者无监督学习策略来挖掘潜在的局部特征。尽管缺乏精确的标注,但这些方法仍能取得不错的效果。 **YOLO(You Only Look Once)**是一种实时目标检测系统,虽然最初设计用于通用物体检测,但已被扩展应用于细粒度图像识别。YOLO通过单个神经网络同时预测边界框和类别概率,对于快速识别细粒度图像的特定部位有优势。 **多尺度CNN**考虑了不同尺度下的信息,适应了细粒度图像中对象可能出现在不同大小的情况。通过多尺度输入或金字塔结构,网络可以捕捉到不同分辨率的细节,提高分类精度。 **生成对抗网络(GAN)**在细粒度图像分类中的应用主要体现在数据增强和特征学习。GAN可以生成新的训练样本,帮助模型学习更多的多样性和复杂性,同时,通过对抗性训练,可以学习到更鲁棒的表示。 细粒度图像分类的**数据增强**方法,如旋转、平移、缩放等,有助于扩大训练集并增强模型的泛化能力。而针对复杂场景,不同的识别方法,如基于关系建模、多任务学习等,可以根据场景特性选择最优策略。 当前的研究趋势和挑战包括:开发更有效的特征表示方法、减少对大量标注数据的依赖、提高模型的解释性以及在有限计算资源下的实时性能优化。未来的细粒度图像分类研究将继续深入探究深度学习的潜力,以应对更多变和复杂的识别任务。
2025-04-20 23:25:45 2.3MB 图像分类
1
UCAS-MachineLearning-homework 国科大 电子学院 叶齐祥老师 机器学习 课程作业 基于python实现 作业一:GMM - 手写高斯混合模型算法,用期望最大算法(EM)实现。 作业二:SVM - 手写支持向量机算法,用序列最小最优化算法(SMO)实现。 作业三:CNN - 手写卷积神经网络算法,包括前向传播、反向传播、参数更新。
2025-04-20 20:53:54 13KB 机器学习 UCAS
1
MetaDiff: Meta-Learning with Conditional Diffusion for Few-Shot Learning MetaDiff:基于条件扩散的元学习方法用于少样本学习 组会汇报ppt MetaDiff是一种创新的元学习方法,它利用条件扩散模型来提升少样本学习(Few-Shot Learning, FSL)的性能。这种学习方法在面对只有少数样本可用的新任务时,通过设计一种特殊的条件UNet作为去噪模型,优化基础学习器的权重,从而实现在有限数据情况下的快速适应。具体而言,MetaDiff将传统梯度下降过程建模为一个扩散过程,这种方法有效地解决了内存消耗和梯度消失的问题。 在研究背景中,作者指出少样本学习是人工智能领域的一大核心挑战。为了提高学习器在处理少样本时的适应能力,MetaDiff利用了元学习的思想,将外层优化过程视为学习器的扩散过程。仿真结果显示,MetaDiff在处理少样本学习任务时,性能优于其他先进的少样本学习方法,能够提升模型的泛化能力,并且显著减少了内存开销。 扩散模型(Diffusion Models)是一种生成模型,其灵感来源于非平衡热力学中的扩散过程。这些模型通过模拟数据集中逐步添加噪声的过程,直至数据完全转化为噪声,然后再通过逆向过程从噪声中恢复出原始数据。在MetaDiff方法中,扩散模型起到了关键作用,帮助模型在数据集逐渐增加噪声的同时学习如何恢复数据,最终达到从少量样本中快速学习和适应新任务的目的。 作者张保权,来自哈尔滨工业大学(深圳)计算机科学与技术学院的助理教授,主要研究方向为小样本学习、多模态学习等人工智能基础理论及其在时空数据挖掘应用。文章中提及的仿真结果表明,MetaDiff方法在miniImagenet和tieredImagenet数据集上取得了明显优于现有先进技术的效果。此外,张教授的研究背景和研究成果也为元学习领域提供了新的思路和方法。 MetaDiff通过条件扩散模型,将元学习方法与数据的扩散过程相结合,创建了一种新的学习范式,这种范式在面对仅有少量样本的新任务时,能够更有效地利用数据,快速适应并提高学习性能。这种研究不仅对元学习和少样本学习的理论发展具有重要意义,而且在实际应用中也具有很大的潜力和价值。
2025-04-13 09:20:13 845KB 扩散模型 少样本学习
1
文字分类 文本分类(文本分类)是自然语言处理中的一个重要应用技术,根据文档的内容或主题,自动识别文档所属的预先定义的类别标签。文本分类是很多应用场景的基础,某些垃圾邮件识别,舆情分析,情感识别,新闻自动分类,智能客服机器人的合并分类等等。此处分为两个部分: 第1部分:基于scikit学习机器学习的Python库,对比几个传统机器学习方法的文本分类 第2部分:基于预训练词向量模型,使用Keras工具进行文本分类,用到了CNN 本文语料:,密码:P9M4。更多新闻标注语料,。 预训练词向量模型来自,下载地址: 。 第1部分:基于scikit-learn机器学习的文本分类方法 基于scikit-
2024-06-24 14:49:13 208KB python nlp machine-learning deep-learning
1
1.2 项目目标 使用机器学习 和 情感词典 这两种方法 分别对中文新闻类文本进行情感极性分析 输入一段新闻文本能够得到文本的情感极性 1.3 目标人群 需要对已有中文文本数据进行情感分析的企业及用户 APP中需要集成中文文本情感分析功能的开发人员 从事中文文本情感分析与挖掘的研究人员
2023-03-14 20:55:17 28.28MB 情感分析 中文 毕业设计
1
针对实际交通场景下的车辆目标,应用深度学习目标分类算法中具有代表性的Faster R-CNN框架,结合ImageNet中的车辆数据集,把场景中的目标检测问题转换为目标的二分类问题,进行车辆目标的检测识别。相比传统机器学习目标检测算法,基于深度学习的目标检测算法在检测准确度和执行效率上优势明显。通过本实验结果分析表明,该方法在识别精度以及速度上均取得了显著的提高。
1
随机森林图像matlab代码步步森林 StepForest:使用局部强度和纹理特征分割结肠组织学图像中腺体的机器学习方法 为在结肠组织学图像中进行腺体分割而创建的基于机器学习的图像分割算法,可以针对其他图像分割问题进行修改。 该算法使用一种新颖的分层随机森林方法,其中使用3个级别的随机森林beeen来进行更好的分割。 为了测试该算法,使用了GlaS @ MICCAI'2015:腺体分割挑战赛()的数据集。 可在上述网站的“下载”标签下下载。 使用的第三方工具箱/代码(由相应作者提供的许可控制):- haralickTextureFeatures由Rune Monzel() Matlab的污点归一化工具箱,作者是Warwick大学的Nicholas Trahearn和Adnan Khan(),这些第三方工具箱/代码的源代码已上传到“工具箱”文件夹下。 可以下载最新版本,并可以从给定的网站获取许可证信息 这项研究是由Rupali Khatun进行的。 这项工作最初是在加尔各答的印度统计研究所(ISI)的电子和通信科学部门(ECSU)以及印度统计研究所(ISI)的印度模式识别和人工智能部门(
2023-03-07 12:57:08 7.89MB 系统开源
1