我们将讨论由欧洲核研究组织超级质子同步加速器的NA49实验在Glauber Monte Carlo方法内逐事件测量的核碰撞中产生的带电粒子的多重波动。 我们在多粒子生产机制中使用了受伤的核子和夸克的概念来表征多重性波动,多重性波动是由多重性分布的比例变化表示的。 尽管受伤的核子模型正确地再现了Pb + Pb碰撞中平均多重性的中心性相关性,但它在描述多样性分布的比例方差的相应中心性相关性方面完全失败。 使用亚核子自由度,即在受伤的夸克模型中的受伤的夸克,可以很好地描述质子+质子相互作用产生的带电粒子的多重分布。 然而,具有描述质子+质子相互作用产生的粒子的多重分布的参数的受伤夸克模型实质上超过了Pb + Pb碰撞产生的带电粒子的平均多重性。 为了获得接近于Pb + Pb碰撞中实验测得的平均多重度的值,实现了阴影夸克源的概念。 实施了遮蔽源方案的伤口夸克模型再现了从最中心到最外围的相互作用在Pb + Pb碰撞中产生的带电粒子的多重分布的比例变化的比例中心性。
2026-01-09 13:22:00 427KB Open Access
1
轻载下润滑滚动轴承的打滑动力学模型:动态研究及减缓措施的探索,包含弹流润滑、油膜刚度与赫兹接触刚度等多重因素的考虑分析,轻载下润滑滚动轴承的打滑现象动态研究与减缓措施:基于MATLAB动力学建模的弹流润滑滚子轴承打滑特性分析,Dynamic investigation and alleviative measures for the skidding phenomenon of lubricated rolling bearing under light load matlab轴承动力学建模,轴承打滑,轴承打滑动力学模型,弹流润滑作用下滚子轴承打滑动力学模型,考虑了油膜刚度与赫兹接触刚度、等效阻尼等,分析了弹流润滑作用下的打滑特性 ,关键词:动态调查; 减缓措施; 润滑滚动轴承; 轻载下打滑现象; Matlab轴承动力学建模; 轴承打滑; 打滑动力学模型; 弹流润滑; 滚子轴承打滑; 油膜刚度; 赫兹接触刚度; 等效阻尼; 打滑特性。 分号分隔结果为: 动态调查;减缓措施;润滑滚动轴承;轻载下打滑现象;Matlab轴承动力学建模;轴承打滑;打滑动力学模型;弹流润滑;滚子轴承打滑;油
2025-11-17 15:42:09 919KB edge
1
内容概要:本文详细介绍了弹流润滑和线接触混合润滑的基本概念及其重要性,重点讨论了多重网格法作为一种高效的数值计算方法,在解决这两类润滑问题中的应用。文章不仅阐述了多重网格法的工作原理,还展示了如何通过MATLAB编程来实现这一算法的具体步骤,包括建立数学模型、编写程序代码并调用MATLAB内置函数完成求解。此外,文中还提及了STEMer这一高效多重网格法计算程序包的引入,强调了其对提升计算效率和精度的作用。 适合人群:从事机械工程领域的研究人员和技术人员,尤其是关注润滑理论、摩擦学及轴承设计的专业人士。 使用场景及目标:适用于需要深入理解和掌握弹流润滑和线接触混合润滑机制的研究项目,旨在帮助读者学会运用多重网格法和MATLAB编程解决实际工程问题,提高设备性能和使用寿命。 阅读建议:读者应在具备一定的数学建模和编程基础上,结合实例操作,逐步理解多重网格法的精髓,同时探索STEMer提供的丰富资源,以期达到最佳的学习效果。
2025-10-14 19:42:53 715KB
1
代数多重网格(Algebraic Multigrid, AMG)是一种高效的数值求解线性系统的预处理技术,尤其适用于大规模的、不规则的稀疏矩阵问题。AMG方法起源于几何多重网格(Geometric Multigrid, GMG),但与GMG不同的是,AMG不需要对问题的物理空间进行多尺度的细化描述,而是基于矩阵的代数特性来构建多重网格层次。这种方法具有高度的灵活性,可以应用于各种复杂的工程和科学计算中。 AMG的核心思想是将复杂的大规模问题分解为一系列较小的、相互关联的问题,并在不同的“网格”层次之间进行迭代。通过在粗网格上快速地求解近似解,然后在细网格上校正,从而加速整体的求解过程。AMG的效率在于它能够有效地捕捉到矩阵的固有结构,减少求解过程中不必要的计算。 AMGX是NVIDIA公司开发的一种基于GPU优化的AMG实现,旨在利用图形处理器的强大并行计算能力,提高大规模科学计算的性能。AMGX提供了一种高度可定制的框架,允许用户根据特定的应用场景调整算法参数,以实现最佳性能。它支持多种预处理和后处理技术,如高斯-塞德尔松弛(Gauss-Seidel Relaxation)、最小二乘修正(Least Squares Correction, LSC)等,以及不同类型的矩阵剖分策略。 在AMG的理论中,关键步骤包括: 1. **共轭梯度法(Conjugate Gradient, CG)**:作为基础的迭代求解器,用于求解线性系统。 2. **粗网格选择**:确定粗化策略,如基于谱间隔或连接强度的矩阵特征来构造粗网格。 3. **限制器(Restriction)**:将细网格的残差信息下采样到粗网格,通常采用插值或投影操作。 4. **扩展器(Interpolation)**:将粗网格的解上采样回细网格,以进行校正。 5. **松弛(Relaxation)**:在每层网格上执行局部迭代,以减少误差。 6. **交错(Aggregation)**:用于构建粗网格的单元,可以基于弱连接或其他准则。 AMG的文献资料涵盖了算法的历史发展、理论基础、实现细节以及应用案例。中文资料可以帮助理解基本概念,而英文资料则可能提供更深入的数学分析和技术细节。通过学习这些资料,你可以掌握如何应用AMG和AMGX解决实际问题,例如在流体动力学、固体力学、电磁学等领域的数值模拟。 AMG和AMGX是现代数值计算中的重要工具,它们结合了数学的优雅和计算的效率,对于处理大型科学计算挑战具有不可估量的价值。通过对AMG理论的学习和AMGX的实际操作,工程师和研究人员可以更好地应对高性能计算面临的复杂性和计算量。
2025-09-26 18:40:37 16.7MB gpu
1
DAB双有源桥电路变换器及其隔离型DC-DC变换器仿真研究:多重移相控制方式与价格分析。,DAB 双有源桥电路 变器 隔离型DC-DC变器仿真,各种控制方式均有 plecs仿真模型 matlab simulink仿真模型 SPS 单重移相控制 EPS 扩展移相控制 DPS 双重移相控制 TPS 三重移相控制 ,关键词:DAB双有源桥电路; 隔离型DC-DC变换器; 控制方式; PLECS仿真模型; MATLAB Simulink仿真模型; SPS单重移相控制; EPS扩展移相控制; DPS双重移相控制; TPS三重移相控制。,"DAB双有源桥电路及其控制策略的仿真研究"
2025-09-25 15:56:43 890KB
1
CAD 多重插入引用炸开方法(加密解密) 本文档主要介绍了 CAD 多重插入引用炸开方法,包括使用 AutoCAD 快速加载 AutoLISP 文件 wjjm 和 cad 加密插件等方法来炸开加密的 CAD 图纸。下面是详细的知识点: 一、什么是 CAD 多重插入引用? CAD 多重插入引用是一种常用的图纸加密技术,通过将图纸加密使其无法被修改或编辑。这种技术可以保护图纸的知识产权和版权,防止未经授权的复制和修改。 二、CAD 多重插入引用炸开方法 方法一:使用 AutoCAD 快速加载 AutoLISP 文件 wjjm * 打开需要炸开的 CAD 文件 * 将 wjjm 文件拖入 CAD 窗口 * 在命令行输入 wjjm 并回车 * 按照提示操作即可 方法二:使用cad 加密插件 * 输入“CYN-”命令将多重插入块转换为普通块 * 然后可以炸开编辑 方法三:使用 lsp 文件 * 将以下内容保存为 lsp 文件(如 exm.lsp) * 加载后运行 exm 将多重插入块转换为普通块 * 然后可以用“explode”分解 * 加载后运行 lockb 将普通块转换为多重插入块 三、AutoLISP 编程语言 AutoLISP 是一种基于 Lisp programming language 的脚本语言,用于自动化 CAD 软件的操作。AutoLISP 可以用来编写脚本,以自动执行重复性的任务,例如批量处理图纸、自动生成report 等。 四、ENTSEL 和 ENTGET 命令 ENTSEL 命令用于选择图形元素,而 ENTGET 命令用于获取图形元素的信息。在本文档中,ENTSEL 和 ENTGET 命令被用于选择多重插入块,并获取其信息,以便炸开加密的 CAD 图纸。 五、DEFUN 命令 DEFUN 命令用于定义一个函数。在本文档中,DEFUN 命令被用于定义两个函数:exm 和 lockb。exm 函数用于将多重插入块转换为普通块,而 lockb 函数用于将普通块转换为多重插入块。 六、CAD 图纸加密技术 CAD 图纸加密技术是保护图纸知识产权和版权的一种常用方法。通过加密,图纸可以防止未经授权的复制和修改,保护设计者的知识产权和经济利益。 本文档介绍了 CAD 多重插入引用炸开方法,包括使用 AutoCAD 快速加载 AutoLISP 文件 wjjm 和 cad 加密插件等方法,并详细介绍了 AutoLISP 编程语言、ENTSEL 和 ENTGET 命令、DEFUN 命令等相关知识点。
2025-09-03 17:09:10 18KB
1
基于华大HC32F030的无刷电机脉冲注入启动法:精准定位与快速启动技术原理及保护机制详解,基于华大MCU的BLDC无刷电机脉冲注入启动法:定位精准、快速启动与多重保护机制原理图及源代码详解,BLDC 无刷电机 脉冲注入 启动法 启动过程持续插入正反向短时脉冲;定位准,启动速度快; Mcu:华大hc32f030; 功能:脉冲定位,脉冲注入,开环,速度环,电流环,运行中启动,过零检测; 保护:欠压保护,过温保护,过流保护,堵转保护,失步保护,Mos检测,硬件过流检测等 提供原理图; 提供源代码; 提供参考文献; ,关键词:BLDC无刷电机;脉冲注入启动法;正反向短时脉冲;定位准;启动速度快;Mcu华大hc32f030;脉冲定位;开环/速度环/电流环控制;欠压/过温/过流保护;硬件过流检测;原理图;源代码;参考文献。 分号分隔结果: BLDC无刷电机;脉冲注入启动法;正反向短时脉冲;定位准;启动速度快;Mcu华大hc32f030;脉冲定位;开环/速度环/电流环控制;欠压/过温/过流保护;硬件过流检测;原理图;源代码;参考文献。,华大hc32f030在BLDC电机驱动中脉冲注入的启动原理及
2025-08-13 15:49:05 1.24MB
1
Android OpenGL ES多重采样抗锯齿MSAA演示demo源码 多重采样抗锯齿MSAA,详解见:https://blog.csdn.net/github_27263697/article/details/143859755 目录 一、抗锯齿概念 二、多重采样 三、OpenGL中的MSAA 1、多样本缓冲的使用 2、离屏MSAA——多采样帧缓冲 1、多采样纹理附件 2、多采样渲染缓冲对象 3、渲染到多采样帧缓冲 四、自定义抗锯齿算法 五、总结 在计算机图形学中,抗锯齿技术旨在改善图像质量,减少图像中物体边缘的锯齿状外观。多重采样抗锯齿(MSAA)是一种有效的抗锯齿技术,它通过对图像的边缘进行多次采样,然后合并这些样本,以达到平滑边缘的效果。Android平台上的OpenGL ES提供了MSAA的支持,使得开发者能够在移动设备上实现高质量的图形渲染。 一、抗锯齿概念 抗锯齿技术的核心思想是消除或减少图像中由于显示设备分辨率限制而产生的不真实锯齿现象。常见的抗锯齿技术包括快速近似抗锯齿(FXAA)、多重采样抗锯齿(MSAA)、时间抗锯齿(TAA)等。抗锯齿的实现方法多样,但目的都是为了使得渲染的场景更加真实和美观。 二、多重采样 多重采样抗锯齿(MSAA)是通过在图形管线的某些阶段,对一个像素的多个位置进行采样,并在渲染管线的后期阶段将这些采样合并,以计算出最终像素颜色的技术。MSAA主要用在图形渲染的几何处理和光栅化阶段,有效减少边缘锯齿,提高图像质量。 三、OpenGL中的MSAA 1、多样本缓冲的使用 在OpenGL ES中,MSAA通过使用多样本缓冲区来实现。多样本缓冲区(Multisample buffers)允许对每个像素进行多次采样,每个采样点可以有不同的深度和颜色信息。渲染过程中,每个几何图形都会在这些采样点上进行绘制,然后在最终的显示过程中,这些采样点的颜色值被合成一个像素值。 2、离屏MSAA——多采样帧缓冲 MSAA还可以通过多采样帧缓冲(Multisampled Framebuffer)来实现离屏渲染。在渲染过程中,通过创建一个包含多个样本的帧缓冲区,将所有渲染目标都绑定到这个缓冲区,从而实现在一个像素上进行多次采样的效果。 四、自定义抗锯齿算法 除了OpenGL ES内置的MSAA外,开发者还可以根据具体的应用场景自定义抗锯齿算法。例如,可以在后处理阶段使用图像空间的算法进行抗锯齿处理,或者结合MSAA和其他技术实现更高质量的抗锯齿效果。 五、总结 MSAA是一种在渲染管线中有效的抗锯齿技术,尤其适合于动态渲染场景。通过合理使用多重采样技术,可以有效提升渲染图像的质量,使得边缘更平滑,场景更真实。在OpenGL ES中,MSAA的实现需要配置适当的渲染缓冲区和帧缓冲区,并利用多样本缓冲来处理像素的多次采样。开发者在应用MSAA技术时,应根据实际的硬件性能和渲染需求来权衡抗锯齿效果与性能开销。
2025-08-07 15:13:27 58KB 多重采样 MSAA OpenGL
1
多重网格法是一种高效的数值解法,广泛应用于求解各种偏微分方程。在润滑理论中,特别是针对弹流润滑膜厚度的准确计算,多重网格法展现出了其独特的优势。弹流润滑(Elastohydrodynamic Lubrication,EHL)是一种在高负荷和高滚动速度条件下出现的润滑状态,其中润滑膜能够承载相当大的载荷,而润滑膜的厚度是影响其性能的关键因素之一。 传统的数值计算方法在求解弹流润滑问题时,往往会遇到计算精度和计算效率难以兼顾的问题。多重网格法通过结合不同层次的网格,在保证计算精度的同时,显著提高了计算效率。在本文中,多重网格法被用于求解稳态等温线接触下的弹性流体动力润滑问题,给出了在不同工况下的数值解,并分析了Reynolds方程楔形项使用不同差分格式时,随着网格层数增加,数值解的变化趋势。 Reynolds方程是描述弹流润滑中润滑膜压力分布的基础方程,而其楔形项与润滑膜的形状密切相关,对计算结果的准确性有着重要影响。对于楔形项,文章分别采用了两点差分和三点差分两种差分格式,并研究了这些差分格式对计算结果的影响。结果显示,在常见工况下,无论是采用两点还是三点差分,随着网格层数的增加,最小膜厚、中心膜厚、第二压力峰值及其位置都会趋于稳定。 文章还提出了经验公式,用于准确计算中心膜厚与最小膜厚。当网格层数较少时,通过将两点差分和三点差分得到的膜厚值代入经验公式,就能获得与更高网格层数情况下计算结果非常接近的膜厚值。这为计算弹流润滑膜厚度提供了一种有效而快速的方法。 从历史发展来看,弹流润滑理论的研究始于20世纪60年代,Dowson和Higginson对线接触弹流润滑问题的研究,以及70年代Hamrock和Dowson对点接触弹流问题的研究,为弹流润滑理论奠定了基础。弹流润滑理论研究的是一个复杂的非线性系统,需要联合求解Reynolds方程、弹性变形方程、载荷平衡方程、黏度方程和密度方程等多个方程。这些方程的非线性特征给数值求解带来了困难。为应对这些困难,学者们提出了一系列的数值计算方法。 多重网格法就是应对这种复杂非线性问题的有效工具之一。它通过构建不同层次的网格,将复杂问题分解成多个子问题,在较粗的网格上获得初步解,再逐步细化网格进行修正,直到达到所需精度。这种方法能够有效减少计算量,缩短计算时间,对于解决大规模计算问题尤为有效。 在弹流润滑的工程应用中,准确计算润滑膜厚度对机械零件的设计与维护有着重要意义。润滑膜厚度不仅影响摩擦学特性,也关系到设备的能耗和寿命。因此,研究者和工程师们一直在寻求更为精确和高效的计算方法,而多重网格法正好满足了这种需求。通过研究者们的不断探索和实践,多重网格法在弹流润滑膜厚度计算中取得了显著的应用效果,为相关领域的深入研究和实际应用提供了强有力的理论支撑和技术支持。
2025-07-08 14:57:22 569KB 多重网格法 弹流润滑
1
多重网格技术应用研讨,线性代数,傅里叶变换,奇异摄动等研究。
2025-07-08 14:57:03 3.61MB 多重网格
1