在日益丰富的音乐应用场景下,实现基于音乐情感的音乐检索、音乐分类和精准推送愈发重要,而一曲音乐在不同片段的情感多变性却使得音乐情感分析任务变得十分复杂。传统的以人工方式对音乐进行情感分析费时费力,简单地使用单标记分类技术也无法准确地分析出音乐所蕴含的复杂而多样的情感,然而,其复杂性与多变性却十分契合多标记分类技术。   针对此问题,**基于多标记分类技术,在依据音乐的物理信息提取的带有情感标记的数据集上,先利用信息熵的思想筛选原始音乐特征空间中关键的数值型向量特征,再利用聚类方法进行特征转换,并完成数据的标准化,从而获得一组原始数据空间对应的映射空间,实现音乐元数据的降维操作,最后再以此导入基本分类器进行音乐情感分析。**该方法有着完备的理论支持,且实验结果表明,基本分类器在映射空间上的多标记分类表现整体上优于原始数据空间。
2022-05-02 09:06:49 317KB 文档资料 分类 数据挖掘 人工智能
随着交通愈加发达,道路愈加拥堵,如何实时准确地获取车辆基本信息以便交通部门及时管理特定路段和路口的车辆显得日益重要.对交通视频中车辆的检测和识别,不仅需要实时检测,还要保证其准确性.针对实际情况中车辆之间的遮挡、光照的变化、阴影、道路旁树枝的晃动、背景中固定对象的移动等因素严重影响检测与识别的精度的问题,提出基于Faster-RCNN(Faster-Regions with CNN features)的车辆实时检测改进算法.首先采用k-means算法对KITTI数据集的目标框进行聚类,得到合适的长宽比,并增加一组尺度(64~2)以适应差异较大的车辆尺寸;然后改进区域提案网络,降低计算量,优化网络结构;最后在训练阶段采用多尺度策略,降低漏检率,提高精确率.实验结果表明:改进后的车辆检测算法的mAP(mean Average Precision)达到了82.20%,检测速率为每张照片耗时0.03875 s,基本能够满足车辆实时检测的需求.
1
多标记常用的实验数据集
2021-06-01 14:00:16 160MB Multi-Label
1
算法源码matlab
2021-06-01 14:00:14 122.65MB 源码
1
可以直接执行的matlab程序,内含数据资料,是我在学习过程中总结的,对于新学MLKNN的小伙伴很有帮助,希望可以采纳,有问题可以多多讨论
2021-04-10 14:53:32 3.29MB MLKNN matlab code multilabel
1
多标记
2021-03-02 13:06:18 612KB Java
1
该代码专门处理多标记数据,使用扩展的最近邻算法建立能够处理多标记数据集的分类器,而且提供几种有效的评价指标。
2019-12-21 21:16:12 5KB 多标记 KNN
1