GoEmotions火炬手 使用实现Pytorch实现 什么是GoEmotions 数据集以28种情感标记为58000个Reddit评论 钦佩,娱乐,愤怒,烦恼,批准,关怀,困惑,好奇心,欲望,失望,不赞成,厌恶,尴尬,兴奋,恐惧,感激,悲伤,喜悦,爱,紧张,乐观,骄傲,意识到,缓解,后悔,悲伤,惊喜+中立 训练细节 使用基于bert-base-cased (与论文的代码相同) 在本文中,使用了3种分类法。 我还使用用于分类hierarchical grouping和ekman新分类标签制作了数据。 原始GoEmotions (27种情感+中性) 分层分组(正,负,模棱两可+中性) 艾克曼(愤怒,厌恶,恐惧,喜悦,悲伤,惊奇+中立) 词汇 我已分别将[unused1] , [unused2]替换为[NAME]和[RELIGION] 。 [PAD] [NAME] [RELIGI
1
社交媒体为许多人提供了一个在线表达情感的机会。 对用户情绪进行自动分类可以帮助我们理解公众的偏爱,公众有很多有用的应用程序,包括情感检索和意见汇总。 短文本在Web上很普遍,尤其是在推文,问题和新闻标题中。 现有的大多数社会情感分类模型都集中在长文档传达的用户情感的检测上。 在本文中,我们介绍了一种用于对短文本进行用户情感分类的多标签最大熵(MME)模型。 MME通过对多个用户共同评分的多个情感标签和价进行建模,从而生成丰富的功能。 为了提高该方法在变尺度语料库上的鲁棒性,我们进一步开发了一种针对MME的协同训练算法,并将L-BFGS算法用于广义MME模型。 在现实世界中的短文本集合上进行的实验验证了这些方法对稀疏特征进行社会情感分类的有效性。 我们还演示了生成的词典在识别传达不同社会情感的实体和行为中的应用。 (C)2016 Elsevier BV保留所有权利。
2022-05-01 15:15:41 601KB Multi-label maximum entropy model Social
1
文本多标签分类-BERT-Tf2.0 该存储库包含针对多标签文本分类的预训练BERT模型的Tensorflow2.0实现。 脚步 从下载数据 借助download_bert.sh下载预训练的模型权重 运行train_bert.py 训练损失和准确性 测试损失和准确性
1
Multi-label-Classification Multi-label attributes Classification and CAM& grad-cam (6.26 晚补充部分)之前一直放着grad-cam没有看懂,现在首先对这一部分做补充。 CAM算法简单而且很好用,但是它修改了原本的网络,对于这个问题,Grad-cam在不修改原网络的情况下也可以实现一样的效果,两者等价的理论推导在论文中有证明。 原理简单理解在这里做个记录: 用输出类别的权重对特征图求梯度,取均值 (14, 14, 512)->( 512,) 后分别乘以特征图的每一层相加得到cam 导向反向传播,用到了注册梯度函数,定义一个新的op类型,只反向传播梯度为正的值。对(14,14,512)求最大值(14,14)后的和对输入求梯度。(6.26 晚补充部分) 训练的分类准确率达到0.8 准确率和loss如图所示:
2022-03-14 11:49:59 834KB Python
1
简介 1、本项目是在tensorflow版本1.14.0的基础上做的训练和测试。 2、本项目为中文的多标签文本分类。 3、欢迎大家联系我 4、albert_small_zh_google对应的百度云下载地址: 链接: 提取码:wuxw 使用方法 1、准备数据 数据格式为:classifier_multi_label_textcnn/data/test_onehot.csv 2、参数设置 参考脚本 hyperparameters.py,直接修改里面的数值即可。 3、训练 python train.py 4、预测 python predict.py 知乎代码解读
1
多标签文本分类 Kaggle有毒评论挑战 随着可用数据的不断增加,迫切需要对数据进行组织,而现代分类问题通常涉及与单个实例同时关联的多个标签的预测。 这种称为多标签分类的任务就是这样的任务,它在许多现实世界中的问题中无所不在。 在这个项目中,以Kaggle问题为例,我们探索了多标签分类的不同方面。 该项目的鸟瞰图: 第1部分:多标签分类概述。 第2部分:问题定义和评估指标。 第3部分:探索性数据分析(EDA)。 第4部分:数据预处理。 第5部分:多标签分类技术。 有关此项目的详细博客,请参见[ ]
2021-12-26 00:24:26 781KB JupyterNotebook
1
多标签图像分类 使用集成深度CNN进行多标签图像分类的基准 代码说明 代码已使用PyTorch 0.4进行了测试。 通过取消注释相应的行以进行随机裁剪和混合,可以根据model1代码改编本文中出现的Model2(M2)和model3(M3)。 要使用以下命令运行脚本:python resnet101_model1fc.py 1 512 16(三个参数是试验索引,补丁大小,批处理大小) VOC2007的评估指标与NUS-WIDE和MS-COCO的评估指标略有不同,因为注释中存在“困难的示例”,在评估时会被忽略。 我们使用所有训练数据来训练模型和训练停止的固定标准。 数据 要运行该代码,您可能需要从其官方网站下载三个数据集的图像。 参考 王谦,贾宁,Toby P.Breckon,《使用集成深度CNN进行多标签图像分类的基线》,2019年IEEE国际图像处理会议,台北。 接触
1
pytorch-多标签分类 多标签分类任务的个人实施。 用于danbooru2020数据集中的top-8k标签。 运行main.py进行培训和评估。
2021-12-22 21:02:48 168KB Python
1
cail2019_track2 中国法研杯CAIL2019要素抽取任务第三名方案分享 欢迎大家使用 (修改了一下readme,之前那一版感觉写的太水了。) 这次比赛和前两名差距很大,但是也在此给大家分享一下我所用的方案。 主要的trick包括领域预训练、focal loss、阈值移动、规则匹配以及模型优化、调参。 没有使用模型融合。 效果对比 由于是第一次参赛,很多比赛细节没有做记录,效果对比的分数是我从凭印象在上传历史记录里边找的,可能分数不一致,但是大概就在那个范围,还请见谅。 Model 详情 线上评分 BERT 使用bert_base做多标签分类 69.553 BERT+RCNN+ATT 在BERT后增加RCNN层,并把最大池化换成Attention 70.143 BERT+RCNN+ATT 增加阈值移动 70.809 BERT+RCNN+ATT 增加focal loss 71.1
2021-11-03 12:39:42 4.19MB multi-label-classification bert rcnn focal-loss
1
PyTorch的Bert多标签文本分类 此仓库包含用于多标签文本分类的预训练BERT和XLNET模型的PyTorch实现。 代码结构 在项目的根目录,您将看到: ├── pybert | └── callback | | └── lrscheduler.py   | | └── trainingmonitor.py  | | └── ... | └── config | | └── basic_config.py #a configuration file for storing model parameters | └── dataset    | └── io
2021-08-27 20:41:49 154KB nlp text-classification transformers pytorch
1